Wie sieht der Graph von 3e^-x aus?

Antwort

Der Graph der Funktion \( f(x) = 3e^{-x} \) hat folgende Eigenschaften: 1. **Form**: Es handelt sich um eine exponentielle Abklingfunktion. Der Graph fällt von links nach rechts ab. 2. **Y-Achsenabschnitt**: Bei \( x = 0 \) ist \( f(0) = 3e^{0} = 3 \). Der Graph schneidet die y-Achse also bei \( (0, 3) \). 3. **Asymptoten**: Der Graph nähert sich asymptotisch der x-Achse, aber berührt oder schneidet sie nie. Das bedeutet, dass \( f(x) \) gegen 0 geht, wenn \( x \) gegen unendlich geht. 4. **Verhalten für große x-Werte**: Für sehr große Werte von \( x \) wird \( 3e^{-x} \) sehr klein, da \( e^{-x} \) gegen 0 geht. 5. **Verhalten für negative x-Werte**: Für negative Werte von \( x \) wächst \( 3e^{-x} \) exponentiell, da \( e^{-x} \) für negative \( x \) sehr groß wird. Zusammengefasst: Der Graph startet bei \( (0, 3) \), fällt exponentiell ab und nähert sich der x-Achse asymptotisch an, ohne sie zu berühren.

Frage stellen und sofort Antwort erhalten

Verwandte Fragen

Wie zeichnet man den Graphen einer Funktion, z.B. y= 0,5 (x-1,5)²-2?

Um den Graphen der Funktion \( y = 0,5 (x - 1,5)^2 - 2 \) zu zeichnen, folge diesen Schritten: 1. **Bestimme die Scheitelpunktform**: Die Funktion ist bereits in der Scheitelpunktform \( y = a(x - h)... [mehr]

Was ist die Ableitung von 4,89 hoch x?

Die Ableitung der Funktion \( f(x) = 4,89^x \) kann mit der Exponentialregel abgeleitet werden. Die Ableitung ist gegeben durch: \[ f'() = 4,89^x \cdot \ln(4,89) \] Hierbei ist \( \ln(4,89) \)... [mehr]

Was sind die Nullstellen von f(x) = (x - 2,5)² + 1?

Um die Nullstellen der Funktion \( f(x) = (x - 2.5)^2 + 1 \) zu finden, setzt man die Funktion gleich null: \[ (x - 2.5)^2 + 1 = 0 \] Zuerst isolieren wir den quadratischen Term: \[ (x - 2.5)^2 = -... [mehr]

Nullstelle von h(x) = x² - 1,5?

Um die Nullstellen der Funktion \( h(x) = x^2 - 1,5 \) zu finden, setzt man die Funktion gleich null: \[ x^2 - 1,5 = 0 \] Das kann umgeformt werden zu: \[ x^2 = 1,5 \] Nun zieht man die Quadra... [mehr]

Wie finde ich die Anzahl der Nullstellen einer quadratischen Funktion?

Um die Anzahl der Nullstellen einer quadratischen Funktion der Form \( f(x) = ax^2 + bx + c \) zu bestimmen, kannst du die Diskriminante \( D \) verwenden, die aus den Koeffizienten \( a \), \( b \) u... [mehr]

Wie berechne ich die Nullstelle von ab/(x+b)^2?

Um die Nullstelle der Funktion \( f(x) = \frac{ab}{(x+b)^2} \) zu berechnen, setzt man die Funktion gleich null: \[ \frac{ab}{(x+b)^2} = 0 \] Eine Bruchgleichung ist genau dann null, wenn der Zä... [mehr]

Wie überprüft man schnell die Surjektivität einer Funktion?

Um die Surjektivität einer Funktion schnell zu überprüfen, kannst du folgende Schritte befolgen: 1. **Definition verstehen**: Eine Funktion \( f: A \to B \) ist surjektiv, wenn fü... [mehr]

Was ist die Ableitung von ax/(x+b)?

Um die Ableitung der Funktion \( f(x) = \frac{ax}{x + b} \) zu bestimmen, kannst du die Quotientenregel anwenden. Die Quotientenregel besagt, dass die Ableitung einer Funktion der Form \( \frac{u}{v}... [mehr]

Nullstelle von f(x)=(x-1)-ln(x)?

Um die Nullstelle der Funktion \( f(x) = (x - 1) - \ln(x) \) zu finden, setzt man die Funktion gleich null: \[ f(x) = 0 \implies (x - 1) - \ln(x) = 0 \] Das vereinfacht sich zu: \[ x - 1 = \ln(x) \... [mehr]

Was ist der Mittelwertsatz für f(x) = -1/3x^3 + 1/4x^2 + 3x + 2?

Der Mittelwertsatz der Differentialrechnung besagt, dass für eine Funktion \( f \), die auf einem geschlossenen Intervall \([a, b]\) stetig und auf dem offenen Intervall \((a, b)\) differenzierba... [mehr]