Um die Ableitung der Funktion \( f(x) = \frac{ax}{x + b} \) zu bestimmen, kannst du die Quotientenregel anwenden. Die Quotientenregel besagt, dass die Ableitung einer Funktion der Form \( \frac{u}{v}... [mehr]
Um die Gleichung der Tangente \( t(x) \) an der Stelle \( x_0 = 1 \) für die Funktion \( f(x) = \frac{1}{x^2} \) zu berechnen, sind folgende Schritte notwendig: 1. **Bestimme den Funktionswert an der Stelle \( x_0 \)**: \[ f(1) = \frac{1}{1^2} = 1 \] 2. **Berechne die Ableitung \( f'(x) \)**: Die Ableitung von \( f(x) = \frac{1}{x^2} \) kann mit der Potenzregel berechnet werden: \[ f'(x) = -2x^{-3} = -\frac{2}{x^3} \] 3. **Bestimme die Ableitung an der Stelle \( x_0 \)**: \[ f'(1) = -\frac{2}{1^3} = -2 \] 4. **Verwende die Punkt-Steigungsform der Geradengleichung**: Die Gleichung der Tangente \( t(x) \) an der Stelle \( x_0 \) ist gegeben durch: \[ t(x) = f(x_0) + f'(x_0)(x - x_0) \] Setze die Werte ein: \[ t(x) = 1 - 2(x - 1) \] 5. **Vereinfache die Gleichung**: \[ t(x) = 1 - 2x + 2 = -2x + 3 \] Die Gleichung der Tangente \( t(x) \) an der Stelle \( x_0 = 1 \) lautet also: \[ t(x) = -2x + 3 \]
Um die Ableitung der Funktion \( f(x) = \frac{ax}{x + b} \) zu bestimmen, kannst du die Quotientenregel anwenden. Die Quotientenregel besagt, dass die Ableitung einer Funktion der Form \( \frac{u}{v}... [mehr]
Die Ableitung der Funktion \( f(x) = 4,89^x \) kann mit der Exponentialregel abgeleitet werden. Die Ableitung ist gegeben durch: \[ f'() = 4,89^x \cdot \ln(4,89) \] Hierbei ist \( \ln(4,89) \)... [mehr]
Um die Ableitung der Funktion \( f(x) = x + \sqrt{x} \) zu bestimmen, gehen wir Schritt für Schritt vor. 1. **Identifikation der Funktionsteile**: Die Funktion besteht aus zwei Teilen: \( x \) u... [mehr]
Um die Nullstellen der Funktion \( f(x) = (x - 2.5)^2 + 1 \) zu finden, setzt man die Funktion gleich null: \[ (x - 2.5)^2 + 1 = 0 \] Zuerst isolieren wir den quadratischen Term: \[ (x - 2.5)^2 = -... [mehr]
Um die Nullstellen der Funktion \( h(x) = x^2 - 1,5 \) zu finden, setzt man die Funktion gleich null: \[ x^2 - 1,5 = 0 \] Das kann umgeformt werden zu: \[ x^2 = 1,5 \] Nun zieht man die Quadra... [mehr]
Um die Anzahl der Nullstellen einer quadratischen Funktion der Form \( f(x) = ax^2 + bx + c \) zu bestimmen, kannst du die Diskriminante \( D \) verwenden, die aus den Koeffizienten \( a \), \( b \) u... [mehr]
Um den Graphen der Funktion \( y = 0,5 (x - 1,5)^2 - 2 \) zu zeichnen, folge diesen Schritten: 1. **Bestimme die Scheitelpunktform**: Die Funktion ist bereits in der Scheitelpunktform \( y = a(x - h)... [mehr]
Um die Nullstelle der Funktion \( f(x) = \frac{ab}{(x+b)^2} \) zu berechnen, setzt man die Funktion gleich null: \[ \frac{ab}{(x+b)^2} = 0 \] Eine Bruchgleichung ist genau dann null, wenn der Zä... [mehr]
Um die Surjektivität einer Funktion schnell zu überprüfen, kannst du folgende Schritte befolgen: 1. **Definition verstehen**: Eine Funktion \( f: A \to B \) ist surjektiv, wenn fü... [mehr]
Um die Nullstelle der Funktion \( f(x) = (x - 1) - \ln(x) \) zu finden, setzt man die Funktion gleich null: \[ f(x) = 0 \implies (x - 1) - \ln(x) = 0 \] Das vereinfacht sich zu: \[ x - 1 = \ln(x) \... [mehr]