Die zweite Wurzel von \( x \) ist gleich \( \sqrt{x} \) oder \( x^{1/2} \). Die erste Ableitung davon ist: \[ \frac{d}{dx} \left( x^{1/2} \right) = \frac{1}{2} x^{-1/2} = \frac{1}{2\sqrt{x}} \] **A... [mehr]
Um die Gleichung der Tangente an den Graphen der Funktion \( f(x) = 3x^2 - 2 \) an der Stelle \( x_0 = 2 \) zu bestimmen, sind folgende Schritte notwendig: 1. **Berechnung des Funktionswertes an der Stelle \( x_0 = 2 \):** \[ f(2) = 3 \cdot 2^2 - 2 = 3 \cdot 4 - 2 = 12 - 2 = 10 \] Der Punkt auf dem Graphen ist also \( (2, 10) \). 2. **Berechnung der Ableitung der Funktion \( f(x) \):** \[ f'(x) = \frac{d}{dx}(3x^2 - 2) = 6x \] 3. **Berechnung des Wertes der Ableitung an der Stelle \( x_0 = 2 \):** \[ f'(2) = 6 \cdot 2 = 12 \] Die Steigung der Tangente an der Stelle \( x_0 = 2 \) ist also \( m = 12 \). 4. **Aufstellen der Tangentengleichung:** Die allgemeine Form der Tangentengleichung ist \( t(x) = m \cdot x + b \). Um den y-Achsenabschnitt \( b \) zu bestimmen, wird der Punkt \( (2, 10) \) in die Gleichung eingesetzt: \[ 10 = 12 \cdot 2 + b \] \[ 10 = 24 + b \] \[ b = 10 - 24 = -14 \] Die Gleichung der Tangente lautet also: \[ t(x) = 12x - 14 \]
Die zweite Wurzel von \( x \) ist gleich \( \sqrt{x} \) oder \( x^{1/2} \). Die erste Ableitung davon ist: \[ \frac{d}{dx} \left( x^{1/2} \right) = \frac{1}{2} x^{-1/2} = \frac{1}{2\sqrt{x}} \] **A... [mehr]
Um die Ableitung der Funktion \( f(x) = \frac{ax}{x + b} \) zu bestimmen, kannst du die Quotientenregel anwenden. Die Quotientenregel besagt, dass die Ableitung einer Funktion der Form \( \frac{u}{v}... [mehr]
Die Ableitung der Funktion \( f(x) = e^{a \cdot x} \) nach \( x \) ist: \[ f'(x) = a \cdot e^{a \cdot x} \] Dabei ist \( a \) eine Konstante.
Gesucht ist eine Funktion \( f(x) \), die - ein Maximum bei \( (332.0822,\ 0.83269) \), - ein Minimum bei \( (332.2387,\ -0.82764) \) hat, - und für \( x \to \infty \) gegen die x-Achse (also \(... [mehr]
Ein Beispiel für eine Funktion, die ein Minimum und ein Maximum besitzt und auf beiden Seiten (für \( x \to -\infty \) und \( x \to +\infty \)) die x-Achse als Asymptote hat, ist die Funktio... [mehr]
Eine ganzrationale Funktion ist eine Funktion, die durch ein Polynom dargestellt wird. Das bedeutet, sie hat die Form f(x) = aₙxⁿ + aₙ₋₁xⁿ⁻¹ + ... + a₁x + a₀ Dabei sind a₀, a₁, ..., aₙ reelle Z... [mehr]
Die Funktion \( g(x) = |x-1| + |x-2| \) ist **nicht überall differenzierbar**. **Begründung:** Der Ausdruck \( |x-a| \) ist an der Stelle \( x = a \) **nicht differenzierbar**, da dort ein... [mehr]
Die Ableitung von \(-\cos(x)\) nach \(x\) ist: \[ \frac{d}{dx}[-\cos(x)] = \sin(x) \] Das Minuszeichen bleibt erhalten, und die Ableitung von \(\cos(x)\) ist \(-\sin(x)\), also: \[ -\frac{d}{dx}[\c... [mehr]
Gegeben ist die Funktion: \( f(x) = \sqrt{2x} \) Das ist eine Verkettung zweier Funktionen: - **Äußere Funktion:** \( g(u) = \sqrt{u} = u^{1/2} \) - **Innere Funktion:** \( h(x) = 2x \)... [mehr]
Eine Funktion \( f(x) \) wird längs der x-Achse gestaucht oder gestreckt, indem du das Argument der Funktion mit einem Faktor \( a \) multiplizierst: - **Streckung entlang der x-Achse:** \(... [mehr]