Um die Gleichung der Symmetrieachse eines Graphen \( g \) anzugeben, musst du zunächst bestimmen, um welche Art von Funktion es sich handelt. Hier sind die Schritte, die du befolgen kannst: 1. *... [mehr]
Ja, es gibt Geraden, die keine Schnittstelle mit der x-Achse haben. Solche Geraden sind parallel zur x-Achse und liegen entweder oberhalb oder unterhalb der x-Achse. Ein Beispiel dafür ist die Gerade, die durch die Gleichung \(y = c\) beschrieben wird, wobei \(c\) eine Konstante ist, die nicht gleich null ist. Diese Gerade schneidet die x-Achse nicht, da sie konstant einen bestimmten y-Wert hat.
Um die Gleichung der Symmetrieachse eines Graphen \( g \) anzugeben, musst du zunächst bestimmen, um welche Art von Funktion es sich handelt. Hier sind die Schritte, die du befolgen kannst: 1. *... [mehr]
Ja, die Funktion \( e^{-x^2} \) ist eine gerade Funktion. Eine Funktion \( f(x) \) ist gerade, wenn gilt: \( f(-x) = f(x) \) für alle \( x \) im Definitionsbereich der Funktion. Für \( f(x... [mehr]
Die Funktion \( f(x) = \frac{e^x}{2} \) ist eine gerade Funktion. Eine Funktion ist gerade, wenn gilt: \( f(-x) = f(x) \) für alle \( x \). Für \( f(x) = \frac{e^x}{2} \) gilt: \[ f(-x) =... [mehr]