Möglichen Funktionsterm für eine ganzrationale Funktion 4. Grades mit zwei doppelten Nullstellen angeben.

Antwort

Eine ganzrationale Funktion 4. Grades mit zwei doppelten Nullstellen kann in der Form \( f(x) = a(x - x_1)^2(x - x_2)^2 \) geschrieben werden, wobei \( x_1 \) und \( x_2 \) die Nullstellen sind und \( a \) eine Konstante ist. Ein Beispiel für eine solche Funktion ist: \[ f(x) = (x - 1)^2(x + 2)^2 \] Hier sind die Nullstellen \( x_1 = 1 \) und \( x_2 = -2 \), beide mit der Vielfachheit 2.

Frage stellen und sofort Antwort erhalten

Verwandte Fragen

Nullstellen berechnen für x^(3)+4x^(2)+3x

Um die Nullstellen der Funktion \( f(x) = x^3 + 4x^2 + 3x \) zu berechnen, setzt man die Funktion gleich null: \[ x^3 + 4x^2 + 3x = 0 \] Zuerst kann man \( x \) ausklammern: \[ x(x^2 + 4x + 3) = 0... [mehr]

Was ist die Riemannsche Vermutung?

Die Riemannsche Vermutung ist eines der berühmtesten und wichtigsten ungelösten Probleme der Mathematik. Sie wurde 1859 von dem deutschen Mathematiker Bernhard Riemann formuliert und besch&a... [mehr]

Was sind die Nullstellen von f(x) = (x - 2,5)² + 1?

Um die Nullstellen der Funktion \( f(x) = (x - 2.5)^2 + 1 \) zu finden, setzt man die Funktion gleich null: \[ (x - 2.5)^2 + 1 = 0 \] Zuerst isolieren wir den quadratischen Term: \[ (x - 2.5)^2 = -... [mehr]

Einfacher Beweis des Satzes von Vieta.

Der Satz von Vieta beschreibt die Beziehungen zwischen den Koeffizienten eines Polynoms und den Wurzeln dieses Polynoms. Für ein quadratisches Polynom der Form \( ax^2 + bx + c = 0 \) mit den Wur... [mehr]

(A^3 - b^3)(a^3 + b^3)?

Der Ausdruck \((A^3 - B^3)(A^3 + B^3)\) kann mithilfe der Identität für die Differenz und die Summe von Kuben vereinfacht werden. Zuerst erkennen wir, dass: \[ A^3 - B^3 = (A - B)(A^2 + A... [mehr]

Wie finde ich die Anzahl der Nullstellen einer quadratischen Funktion?

Um die Anzahl der Nullstellen einer quadratischen Funktion der Form \( f(x) = ax^2 + bx + c \) zu bestimmen, kannst du die Diskriminante \( D \) verwenden, die aus den Koeffizienten \( a \), \( b \) u... [mehr]

Vereinfache (x+6)(x+6).

Um den Ausdruck \((x + 6)(x + 6)\) zu vereinfachen, kannst du die binomische Formel verwenden. Dies ist ein Quadrat eines Binoms, das wie folgt aussieht: \[ (a + b)^2 = a^2 + 2ab + b^2 \] In deinem... [mehr]

x² - 6 - (x + 2)(x - 2) + 2x?

Um den Ausdruck \( x^2 - 6 - (x + 2)(x - 2) + 2x \) zu vereinfachen, folge diesen Schritten: 1. Berechne das Produkt \( (x + 2)(x - 2) \): \[ (x + 2)(x - 2 = x^2 4 ] 2. Setze das Ergebnis in... [mehr]