Wenn meine originale Funktion 3 Nullstellen hat, woher weiß ich, dass sie nur 2 mal das Monotonieverhalten verändert?

Antwort

Eine Funktion, die drei Nullstellen hat, kann ihr Monotonieverhalten nur zweimal ändern, weil die Anzahl der Extremstellen (also Maxima und Minima) einer Funktion immer um eins geringer ist als die Anzahl der Nullstellen. Hier ist der Grund: 1. **Nullstellen und Extremstellen**: Eine Funktion \( f(x) \) hat Nullstellen, wo \( f(x) = 0 \). Die Extremstellen (Maxima und Minima) einer Funktion sind die Punkte, an denen die Ableitung \( f'(x) = 0 \). 2. **Zusammenhang zwischen Nullstellen und Extremstellen**: Zwischen jeder Nullstelle einer Funktion muss mindestens eine Extremstelle liegen, wenn die Nullstellen nicht mehrfach sind. Das bedeutet, wenn eine Funktion drei Nullstellen hat, dann gibt es mindestens zwei Intervalle, in denen die Funktion ihr Monotonieverhalten ändert (von steigend zu fallend oder umgekehrt). 3. **Monotonieverhalten**: Das Monotonieverhalten einer Funktion ändert sich an den Extremstellen. Wenn eine Funktion drei Nullstellen hat, dann hat sie zwei Extremstellen, weil zwischen jeder Nullstelle eine Extremstelle liegen muss. Daher ändert eine Funktion mit drei Nullstellen ihr Monotonieverhalten genau zweimal.

Frage stellen und sofort Antwort erhalten

Verwandte Fragen

Was sind die Nullstellen von f(x) = (x - 2,5)² + 1?

Um die Nullstellen der Funktion \( f(x) = (x - 2.5)^2 + 1 \) zu finden, setzt man die Funktion gleich null: \[ (x - 2.5)^2 + 1 = 0 \] Zuerst isolieren wir den quadratischen Term: \[ (x - 2.5)^2 = -... [mehr]

Wie finde ich die Anzahl der Nullstellen einer quadratischen Funktion?

Um die Anzahl der Nullstellen einer quadratischen Funktion der Form \( f(x) = ax^2 + bx + c \) zu bestimmen, kannst du die Diskriminante \( D \) verwenden, die aus den Koeffizienten \( a \), \( b \) u... [mehr]

Wie bestimmt man das Monotonieverhalten?

Um das Monotonieverhalten einer Funktion zu bestimmen, folge diesen Schritten: 1. **Ableitung bilden**: Berechne die erste Ableitung der Funktion \( f(x) \). 2. **Nullstellen der Ableitung finden**:... [mehr]

Nullstelle von h(x) = x² - 1,5?

Um die Nullstellen der Funktion \( h(x) = x^2 - 1,5 \) zu finden, setzt man die Funktion gleich null: \[ x^2 - 1,5 = 0 \] Das kann umgeformt werden zu: \[ x^2 = 1,5 \] Nun zieht man die Quadra... [mehr]

Wie zeichnet man den Graphen einer Funktion, z.B. y= 0,5 (x-1,5)²-2?

Um den Graphen der Funktion \( y = 0,5 (x - 1,5)^2 - 2 \) zu zeichnen, folge diesen Schritten: 1. **Bestimme die Scheitelpunktform**: Die Funktion ist bereits in der Scheitelpunktform \( y = a(x - h)... [mehr]

Wie berechne ich die Nullstelle von ab/(x+b)^2?

Um die Nullstelle der Funktion \( f(x) = \frac{ab}{(x+b)^2} \) zu berechnen, setzt man die Funktion gleich null: \[ \frac{ab}{(x+b)^2} = 0 \] Eine Bruchgleichung ist genau dann null, wenn der Zä... [mehr]

Wie überprüft man schnell die Surjektivität einer Funktion?

Um die Surjektivität einer Funktion schnell zu überprüfen, kannst du folgende Schritte befolgen: 1. **Definition verstehen**: Eine Funktion \( f: A \to B \) ist surjektiv, wenn fü... [mehr]

Was ist die Ableitung von ax/(x+b)?

Um die Ableitung der Funktion \( f(x) = \frac{ax}{x + b} \) zu bestimmen, kannst du die Quotientenregel anwenden. Die Quotientenregel besagt, dass die Ableitung einer Funktion der Form \( \frac{u}{v}... [mehr]

Nullstelle von f(x)=(x-1)-ln(x)?

Um die Nullstelle der Funktion \( f(x) = (x - 1) - \ln(x) \) zu finden, setzt man die Funktion gleich null: \[ f(x) = 0 \implies (x - 1) - \ln(x) = 0 \] Das vereinfacht sich zu: \[ x - 1 = \ln(x) \... [mehr]

Was ist der Mittelwertsatz für f(x) = -1/3x^3 + 1/4x^2 + 3x + 2?

Der Mittelwertsatz der Differentialrechnung besagt, dass für eine Funktion \( f \), die auf einem geschlossenen Intervall \([a, b]\) stetig und auf dem offenen Intervall \((a, b)\) differenzierba... [mehr]