Um eine Funktion in der Mitte einer anderen Gleichung zu verwenden, setzt du sie einfach an die gewünschte Stelle in die Gleichung ein. Das nennt man „Einsetzen“ oder „Substitut... [mehr]
Die allgemeine Formel für eine lineare Funktion lautet\[ y = mx + b \] Dabei ist: - \( y \) der Funktionswert (y-Koordinate), - \( m \) die Steigung der Geraden, - \( x \) die unabhängige Variable (x-Koordinate), - \( b \) der y-Achsenabschnitt (der Wert von \( y \), wenn \( x = 0 \)). Diese Formel beschreibt eine gerade Linie in einem Koordinatensystem.
Um eine Funktion in der Mitte einer anderen Gleichung zu verwenden, setzt du sie einfach an die gewünschte Stelle in die Gleichung ein. Das nennt man „Einsetzen“ oder „Substitut... [mehr]
Um den Prozentsatz zu berechnen, verwendest du folgende Formel: \[ \text{Prozentsatz} = \left( \frac{\text{Teilwert}}{\text{Gesamtwert}} \right) \times 100 \] In deinem Fall: \[ \text{Prozentsatz}... [mehr]
Die Formel für die Standardabweichung (σ) einer Grundgesamtheit lautet: \[ \sigma \sqrt{\frac{1}{N} \sum_{i=1}^{N} (x_i - \mu)^2} \] Dabei gilt: - \( N \): Anzahl der Werte - \( x_i \):... [mehr]
Um die Ableitung der Funktion \[ f(x) = \frac{(x-3)(x+2)}{(x+1)(x+5)} \] zu berechnen, verwendest du die Quotientenregel: \[ f'(x) = \frac{u'(x) \cdot v(x) - u(x) \cdot v'(x)}{[v(x... [mehr]
Eine Integralfunktion ist eine Funktion, die durch das unbestimmte Integral einer gegebenen Funktion \( f(x) \) entsteht. Genauer gesagt: Ist \( f(x) \) eine Funktion, dann ist eine Integralfunktion \... [mehr]
Wenn dir der Winkel \(\alpha\) (in Grad oder Bogenmaß) und der Flächeninhalt \(A_a\) eines Kreissektors gegeben sind, kannst du den Radius \(r\) mit folgender Formel berechnen: **Formel:**... [mehr]
Die Integralrechnung spielte eine entscheidende Rolle bei der Herleitung der Formel für den Flächeninhalt eines Kreises. Historisch wurde der Flächeninhalt eines Kreises zwar schon in d... [mehr]
Die Differenz \( x^2 - y^2 \) kann als sogenannte "Differenz zweier Quadrate" geschrieben werden. Sie lässt sich faktorisieren zu: \[ x^2 - y^2 = (x + y)(x - y) \] Das ist eine grundl... [mehr]
Typischer Wortschatz im Zusammenhang mit der Laplace-Transformation umfasst folgende Begriffe: - **Laplace-Transformation**: Integraltransformation, die eine Funktion \( f(t) \) in eine Funktion \( F... [mehr]
In der Mathematik spricht man in der Regel nicht von der „Definition einer Formel“, sondern unterscheidet zwischen den Begriffen „Formel“ und „Definition“: - **For... [mehr]