Um Aussagen über die Funktion \( f(x) = e^{v(x)} \) zu machen, wobei \( v(x) = x^2 \), betrachten wir zunächst die Ableitung von \( v(x) \). 1. **Ableitung von \( v(x) \)**: \[ v... [mehr]
Um die erste Ableitung der Funktion \( f(x) = e^ \cdot (x + 1) \) zu berechnen, verwenden wir die Produktregel. Die Produktregel besagt, dass die Ableitung eines Produkts zweier Funktionen \( u(x) \) und \( v(x) \) gegeben ist durch: \[ (fg)' = f'g + fg' \] In diesem Fall setzen wir \( u(x) = e^x \) und \( v(x) = x + 1 \). 1. Berechne die Ableitungen: - \( u'(x) = e^x \) - \( v'(x) = 1 \) 2. Wende die Produktregel an: \[ f'(x) = u'(x) \cdot v(x) + u(x) \cdot v'(x) \] \[ f'(x) = e^x \cdot (x + 1) + e^x \cdot 1 \] 3. Fasse die Terme zusammen: \[ f'(x) = e^x \cdot (x + 1) + e^x = e^x \cdot (x + 2) \] Die erste Ableitung der Funktion ist also: \[ f'(x) = e^x \cdot (x + 2) \]
Um Aussagen über die Funktion \( f(x) = e^{v(x)} \) zu machen, wobei \( v(x) = x^2 \), betrachten wir zunächst die Ableitung von \( v(x) \). 1. **Ableitung von \( v(x) \)**: \[ v... [mehr]
Um die dritte Ableitung der Funktion \( f(x) = (4x + 1) \cdot e^x \) zu berechnen, verwenden wir die Produktregel und die Ableitungen von \( e^x \). 1. **Erste Ableitung**: \[ f'(x) = (4x... [mehr]
Um die Ableitung der Funktion \( f(x) = \frac{ax}{x + b} \) zu bestimmen, kannst du die Quotientenregel anwenden. Die Quotientenregel besagt, dass die Ableitung einer Funktion der Form \( \frac{u}{v}... [mehr]
Die Ableitung der Funktion \( f(x) = 4,89^x \) kann mit der Exponentialregel abgeleitet werden. Die Ableitung ist gegeben durch: \[ f'() = 4,89^x \cdot \ln(4,89) \] Hierbei ist \( \ln(4,89) \)... [mehr]
Um die Ableitung der Funktion \( f(x) = x + \sqrt{x} \) zu bestimmen, gehen wir Schritt für Schritt vor. 1. **Identifikation der Funktionsteile**: Die Funktion besteht aus zwei Teilen: \( x \) u... [mehr]
Um die Nullstellen der Funktion \( f(x) = (x - 2.5)^2 + 1 \) zu finden, setzt man die Funktion gleich null: \[ (x - 2.5)^2 + 1 = 0 \] Zuerst isolieren wir den quadratischen Term: \[ (x - 2.5)^2 = -... [mehr]
Um die Nullstellen der Funktion \( h(x) = x^2 - 1,5 \) zu finden, setzt man die Funktion gleich null: \[ x^2 - 1,5 = 0 \] Das kann umgeformt werden zu: \[ x^2 = 1,5 \] Nun zieht man die Quadra... [mehr]
Um die Anzahl der Nullstellen einer quadratischen Funktion der Form \( f(x) = ax^2 + bx + c \) zu bestimmen, kannst du die Diskriminante \( D \) verwenden, die aus den Koeffizienten \( a \), \( b \) u... [mehr]
Um den Graphen der Funktion \( y = 0,5 (x - 1,5)^2 - 2 \) zu zeichnen, folge diesen Schritten: 1. **Bestimme die Scheitelpunktform**: Die Funktion ist bereits in der Scheitelpunktform \( y = a(x - h)... [mehr]
Um die Nullstelle der Funktion \( f(x) = \frac{ab}{(x+b)^2} \) zu berechnen, setzt man die Funktion gleich null: \[ \frac{ab}{(x+b)^2} = 0 \] Eine Bruchgleichung ist genau dann null, wenn der Zä... [mehr]