84 + 18 = 102
Um die Ergebnisse in Normdarstellung zu schreiben, gehen wir die Aufgaben Schritt für Schritt durch. a) \(1,7 \times 10^{-4} + 1,1 \times 10^{-5}\) Zuerst bringen wir beide Zahlen auf die gleiche Potenz von 10. Wir können \(1,1 \times 10^{-5}\) umwandeln: \[ 1,1 \times 10^{-5} = 0,11 \times 10^{-4} \] Jetzt addieren wir: \[ 1,7 \times 10^{-4} + 0,11 \times 10^{-4} = (1,7 + 0,11) \times 10^{-4} = 1,81 \times 10^{-4} \] Das Ergebnis in Normdarstellung ist also: **\(1,81 \times 10^{-4}\)** b) \(5,6 \times 10^{4} + 6,5 \times 10^{6}\) Hier bringen wir \(5,6 \times 10^{4}\) auf die gleiche Potenz von 10 wie \(6,5 \times 10^{6}\): \[ 5,6 \times 10^{4} = 0,056 \times 10^{6} \] Jetzt addieren wir: \[ 0,056 \times 10^{6} + 6,5 \times 10^{6} = (0,056 + 6,5) \times 10^{6} = 6,556 \times 10^{6} \] Das Ergebnis in Normdarstellung ist also: **\(6,556 \times 10^{6}\)**
84 + 18 = 102
Die Zahl 0,009 kann als Addition von Zahlen mit jeweils nur einer Wertziffer (also Stellenwert) so geschrieben werden: 0,009 = 0,001 + 0,001 + 0,001 + 0,001 + 0,001 + 0,001 + 0,001 + 0,001 + 0,001 A... [mehr]
Die Zahl 0,4 kann als Addition von Zahlen mit nur einer Wertziffer (also Ziffern von 0 bis 9, jeweils multipliziert mit einer Zehnerpotenz) wie folgt geschrieben werden: 0,4 = 0,1 + 0,1 + 0,1 + 0,1... [mehr]
3 plus 3 ergibt 6.
1+1 ergibt 2.
Das Ergebnis der Addition 111111111111111111111 + 21345635678854346888654 ist: 21.346.747.89945457999765 In Ziffern geschrieben: 21 346 747 899 454 579 997 65
133 + 10.938 = 11.071
1 + 1 ergibt 2.
3 + 2 ergibt 5.
Drei plus vier ergibt sieben.