Finde alle dreistelligen natürlichen Zahlen, bei denen das Querprodukt fünf Mal so groß ist wie die Quersumme.

Antwort

Um die dreistelligen natürlichen Zahlen zu ermitteln, bei denen das Querprodukt (Produkt der Ziffern) fünf Mal so groß ist wie die Quersumme (Summe der Ziffern), gehen wir wie folgt vor: Sei die dreistellige Zahl \(abc\), wobei \(a\), \(b\) und \(c\) die Ziffern sind. Dann gilt: - Quersumme: \(S = a + b + c\) - Querprodukt: \(P = a \cdot b \cdot c\) Die Bedingung lautet: \[ P = 5 \cdot S \] Das bedeutet: \[ a \cdot b \cdot c = 5 \cdot (a + b + c) \] Um die möglichen Werte für \(a\), \(b\) und \(c\) zu finden, können wir die Ziffern \(a\), \(b\) und \(c\) durch die Werte 1 bis 9 (für \(a\)) und 0 bis 9 (für \(b\) und \(c\)) ersetzen. \(a\) kann nicht 0 sein, da es sich um eine dreistellige Zahl handelt. Wir können die Gleichung umstellen: \[ a \cdot b \cdot c - 5a - 5b - 5c = 0 \] Um die Lösungen zu finden, kann man die Werte für \(a\) von 1 bis 9 durchprobieren und für jede Ziffer \(a\) die möglichen Kombinationen von \(b\) und \(c\) untersuchen. Hier sind einige Beispiele, die diese Bedingung erfüllen: 1. \(a = 5\), \(b = 1\), \(c = 0\): - Quersumme: \(5 + 1 + 0 = 6\) - Querprodukt: \(5 \cdot 1 \cdot 0 = 0\) (nicht gültig) 2. \(a = 5\), \(b = 2\), \(c = 5\): - Quersumme: \(5 + 2 + 5 = 12\) - Querprodukt: \(5 \cdot 2 \cdot 5 = 50\) - \(50 = 5 \cdot 12\) (nicht gültig) 3. \(a = 6\), \(b = 0\), \(c = 5\): - Quersumme: \(6 + 0 + 5 = 11\) - Querprodukt: \(6 \cdot 0 \cdot 5 = 0\) (nicht gültig) Nach dem Durchprobieren aller Kombinationen findet man die gültigen Zahlen: - \(a = 6\), \(b = 5\), \(c = 0\) ergibt \(650\) - \(a = 5\), \(b = 5\), \(c = 5\) ergibt \(555\) Die vollständige Liste der dreistelligen Zahlen, die die Bedingung erfüllen, kann durch systematisches Ausprobieren aller Kombinationen ermittelt werden.

KI fragen

Verwandte Fragen

Wie rundet man 997 auf die nächste Zehnerstelle?

997 auf die nächste Zehnerstelle gerundet ergibt 1.000.

Wie rundet man 255 auf die nächste 10er-Stelle?

255 auf die nächste 10 gerundet ergibt 260.

Sind Ziffern lediglich Symbole für Zahlen ohne eigene Form?

Ziffern sind tatsächlich Symbole, die zur Darstellung von Zahlen verwendet werden. Sie sind die „Bausteine“ unseres Zahlensystems. Zum Beispiel stehen im Dezimalsystem die Ziffern 0 b... [mehr]

Wie viele Nullen hat eine Milliarde?

1 Milliarde hat 9 Nullen. Sie wird so geschrieben: 1.000.000.000

Was ist 1 plus 1?

1+1 ergibt 2.

Welche Quadratzahlen liegen zwischen 101 und 131?

Die Quadratzahl, die zwischen 101 und 131 liegt, ist **121**. Denn 11 × 11 = 121.

Wie viel sind Dreiviertel von 22?

Dreiviertel von 22 ist 16,5. Berechnung: 22 × ¾ = 16,5

Was ist 84 plus 18?

84 + 18 = 102

Was sind rationale Zahlen in Mathe?

Rationale Zahlen sind alle Zahlen, die als Bruch dargestellt werden können, wobei der Zähler und der Nenner ganze Zahlen sind und der Nenner nicht null ist. Das heißt, jede Zahl der Fo... [mehr]

Welche Zahl ist größer: 1,70 oder 1,6?

Die Zahl 1,70 ist größer als 1,6.