84 + 18 = 102
Um die dreistelligen natürlichen Zahlen zu ermitteln, bei denen das Querprodukt (Produkt der Ziffern) fünf Mal so groß ist wie die Quersumme (Summe der Ziffern), gehen wir wie folgt vor: Sei die dreistellige Zahl \(abc\), wobei \(a\), \(b\) und \(c\) die Ziffern sind. Dann gilt: - Quersumme: \(S = a + b + c\) - Querprodukt: \(P = a \cdot b \cdot c\) Die Bedingung lautet: \[ P = 5 \cdot S \] Das bedeutet: \[ a \cdot b \cdot c = 5 \cdot (a + b + c) \] Um die möglichen Werte für \(a\), \(b\) und \(c\) zu finden, können wir die Ziffern \(a\), \(b\) und \(c\) durch die Werte 1 bis 9 (für \(a\)) und 0 bis 9 (für \(b\) und \(c\)) ersetzen. \(a\) kann nicht 0 sein, da es sich um eine dreistellige Zahl handelt. Wir können die Gleichung umstellen: \[ a \cdot b \cdot c - 5a - 5b - 5c = 0 \] Um die Lösungen zu finden, kann man die Werte für \(a\) von 1 bis 9 durchprobieren und für jede Ziffer \(a\) die möglichen Kombinationen von \(b\) und \(c\) untersuchen. Hier sind einige Beispiele, die diese Bedingung erfüllen: 1. \(a = 5\), \(b = 1\), \(c = 0\): - Quersumme: \(5 + 1 + 0 = 6\) - Querprodukt: \(5 \cdot 1 \cdot 0 = 0\) (nicht gültig) 2. \(a = 5\), \(b = 2\), \(c = 5\): - Quersumme: \(5 + 2 + 5 = 12\) - Querprodukt: \(5 \cdot 2 \cdot 5 = 50\) - \(50 = 5 \cdot 12\) (nicht gültig) 3. \(a = 6\), \(b = 0\), \(c = 5\): - Quersumme: \(6 + 0 + 5 = 11\) - Querprodukt: \(6 \cdot 0 \cdot 5 = 0\) (nicht gültig) Nach dem Durchprobieren aller Kombinationen findet man die gültigen Zahlen: - \(a = 6\), \(b = 5\), \(c = 0\) ergibt \(650\) - \(a = 5\), \(b = 5\), \(c = 5\) ergibt \(555\) Die vollständige Liste der dreistelligen Zahlen, die die Bedingung erfüllen, kann durch systematisches Ausprobieren aller Kombinationen ermittelt werden.
84 + 18 = 102
Rationale Zahlen sind alle Zahlen, die als Bruch dargestellt werden können, wobei der Zähler und der Nenner ganze Zahlen sind und der Nenner nicht null ist. Das heißt, jede Zahl der Fo... [mehr]
Die Zahl 1,70 ist größer als 1,6.
3 plus 3 ergibt 6.
1+1 ergibt 2.
Die Teiler von 16 sind: 1, 2, 4, 8 und 16.
Die Teiler von 30 sind: 1, 2, 3, 5, 6, 10, 15 und 30.
Ein Neuntel ist \(\frac{1}{9} \approx 0{,}111\) und ein Elftel ist \(\frac{1}{11} \approx 0{,}0909\). Zwei verschiedene Brüche, die zwischen diesen Werten liegen, sind zum Beispiel: \[ \frac{1}... [mehr]
Der sechste Teil von 2100 ist 350. Berechnung: 2100 ÷ 6 = 350
Um den 10. Teil von 2100 zu berechnen, teilst du 2100 durch 10: 2100 ÷ 10 = 210 Der 10. Teil von 2100 ist also **210**.