Der Rechenausdruck lautet: (88 - 65) + (25 + 96) Berechnung: 88 - 65 = 23 25 + 96 = 121 Nun addieren: 23 + 121 = 144 Das Ergebnis ist **144**.
Um die gesuchte Zahl zu finden, nennen wir sie \( x \). Die Aussage "die Differenz aus 18 und einer Zahl verhält sich zu 30, wie die Summe aus sechs und dieser Zahl zu zwölf" lässt sich mathematisch wie folgt formulieren: \[ \frac{18 - x}{30} = \frac{6 + x}{12} \] Nun kreuzmultiplizieren wir: \[ (18 - x) \cdot 12 = (6 + x) \cdot 30 \] Das ergibt: \[ 216 - 12x = 180 + 30x \] Nun bringen wir alle \( x \)-Terme auf eine Seite und die konstanten Terme auf die andere Seite: \[ 216 - 180 = 30x + 12x \] Das vereinfacht sich zu: \[ 36 = 42x \] Nun teilen wir beide Seiten durch 42: \[ x = \frac{36}{42} = \frac{6}{7} \] Die gesuchte Zahl ist also \( \frac{6}{7} \).
Der Rechenausdruck lautet: (88 - 65) + (25 + 96) Berechnung: 88 - 65 = 23 25 + 96 = 121 Nun addieren: 23 + 121 = 144 Das Ergebnis ist **144**.
Der Rechenausdruck lautet: (26 + 57) – (87 – 73) Nun berechnen wir Schritt für Schritt: 1. 26 + 57 = 83 2. 87 – 73 = 14 3. 83 – 14 = 69 Das Ergebnis ist **69**.
Die Frage ist, ob man mit der **Summe oder Differenz von Primzahlen** alle Zahlen von **0 bis 255** darstellen kann – und falls ja, mit welchen Primzahlen. ### Analyse - **Primzahlen** sind na... [mehr]
Die Zahl 20 kann als Bruch geschrieben werden, indem du sie als Zähler und 1 als Nenner verwendest: \[ 20 = \frac{20}{1} \] Das ist die Darstellung von 20 als Bruch.
Deine Frage ist unklar. Bitte stelle eine klare und präzise Frage.
Der Rechenausdruck lautet: (319 − 228) + 17 Berechnung: 319 − 228 = 91 91 + 17 = 108 Das Ergebnis ist 108.
Der Rechenausdruck lautet: (128 − 99) − (96 − 77) Berechnung: (128 − 99) = 29 (96 − 77) = 19 29 − 19 = 10 Das Ergebnis ist 10.
a) Rechenausdruck: 99 – (44 + 33) Berechnung: 99 – (44 + 33) = 99 – 77 = **22** b) Rechenausdruck: 86 + (77 + 33) Berechnung: 86 + (77 + 33) = 86 + 110 = **196**