997 auf die nächste Zehnerstelle gerundet ergibt 1.000.
Um die Wahrscheinlichkeit zu berechnen, dass du alle 8 angekreuzten Zahlen aus den 20 gezogenen Zahlen triffst, kannst du die hypergeometrische Verteilung verwenden. Die Formel für die hypergeometrische Verteilung ist: \[ P(X = k) = \frac{{\binom{K}{k} \cdot \binom{N-K}{n-k}}}{{\binom{N}{n}}} \] Dabei ist: - \(N\) die Gesamtzahl der Zahlen (48), - \(K\) die Anzahl der gezogenen Zahlen (20), - \(n\) die Anzahl der angekreuzten Zahlen (8), - \(k\) die Anzahl der Treffer (8). In deinem Fall: - \(N = 48\) - \(K = 20\) - \(n = 8\) - \(k = 8\) Setze die Werte in die Formel ein: 1. Berechne \(\binom{K}{k} = \binom{20}{8}\) 2. Berechne \(\binom{N-K}{n-k} = \binom{28}{0}\) (da du keine weiteren Treffer benötigst) 3. Berechne \(\binom{N}{n} = \binom{48}{8}\) Die Berechnungen ergeben: \[ P(X = 8) = \frac{{\binom{20}{8} \cdot \binom{28}{0}}}{{\binom{48}{8}}} \] Da \(\binom{28}{0} = 1\), vereinfacht sich die Formel zu: \[ P(X = 8) = \frac{{\binom{20}{8}}}{{\binom{48}{8}}} \] Nun kannst du die Werte für die Binomialkoeffizienten berechnen: - \(\binom{20}{8} = \frac{20!}{8!(20-8)!}\) - \(\binom{48}{8} = \frac{48!}{8!(48-8)!}\) Die genauen Werte kannst du mit einem Taschenrechner oder einer Software berechnen. Die Wahrscheinlichkeit wird in der Regel sehr klein sein, da du alle 8 Zahlen korrekt treffen musst.
997 auf die nächste Zehnerstelle gerundet ergibt 1.000.
255 auf die nächste 10 gerundet ergibt 260.
Ziffern sind tatsächlich Symbole, die zur Darstellung von Zahlen verwendet werden. Sie sind die „Bausteine“ unseres Zahlensystems. Zum Beispiel stehen im Dezimalsystem die Ziffern 0 b... [mehr]
1 Milliarde hat 9 Nullen. Sie wird so geschrieben: 1.000.000.000
1+1 ergibt 2.
Die Quadratzahl, die zwischen 101 und 131 liegt, ist **121**. Denn 11 × 11 = 121.
Dreiviertel von 22 ist 16,5. Berechnung: 22 × ¾ = 16,5
84 + 18 = 102
Rationale Zahlen sind alle Zahlen, die als Bruch dargestellt werden können, wobei der Zähler und der Nenner ganze Zahlen sind und der Nenner nicht null ist. Das heißt, jede Zahl der Fo... [mehr]
Die Zahl 1,70 ist größer als 1,6.