Nein, das ist nicht korrekt. 1 durch 0 (also \( \frac{1}{0} \)) ist mathematisch **nicht definiert**. Eine Division durch Null ist in der Mathematik nicht erlaubt, weil es keinen Wert gibt, der mit 0...
Um den Bruch 126/231 zu vereinfachen, teilst du sowohl den Zähler als auch den Nenner durch ihren größten gemeinsamen Teiler (ggT). Der ggT von 126 und 231 ist 63. Wenn du 126 durch 63 teilst, erhältst du 2, und wenn du 231 durch 63 teilst, erhältst du 3. Somit vereinfacht sich 126/231 zu 2/3. Die angegebenen Optionen 6/11, 7/9 und 11/14 sind also nicht korrekt, da 126/231 nicht gleich einer dieser Brüche ist.
Nein, das ist nicht korrekt. 1 durch 0 (also \( \frac{1}{0} \)) ist mathematisch **nicht definiert**. Eine Division durch Null ist in der Mathematik nicht erlaubt, weil es keinen Wert gibt, der mit 0...
Um 14.374 durch 34,7 zu teilen, kannst du wie folgt vorgehen: 1. **Komma verschieben:** Da der Divisor (34,7) eine Dezimalzahl ist, verschiebe das Komma bei beiden Zahlen um eine Stelle nach rec...
Rationale Zahlen sind alle Zahlen, die als Bruch dargestellt werden können, wobei Zähler und Nenner ganze Zahlen sind und der Nenner nicht null ist. Das bedeutet, jede Zahl der Form \( \frac...
Die Gleichung „0 durch 0 = 0 durch 1“ ist mathematisch nicht korrekt. - **0 durch 0** (also \( \frac{0}{0})) ist **nicht definiert**. Das liegt daran, dass jede Zahl mal 0 wieder 0 ergibt...
Um Beträge wie 15 € durch 4 im Kopf zu teilen und das Ergebnis möglichst genau zu bestimmen, kannst du folgende Schritte nutzen: 1. **Ganze Zahl bestimmen:** 15 € ÷ 4...
8 Milliarden geteilt durch 88 Tausend ergibt: 8.000.000.000 ÷ 88.000 = 90.909,09 Das Ergebnis ist also etwa 90.909,09.
Die Zahl 1,70 ist größer als 1,6.
Der Ausdruck `-1 OR 3*2>5` sieht aus wie ein logischer Ausdruck, wie er in SQL oder Programmiersprachen verwendet wird. - `3*2>5` ergibt `6>5`, was `wahr` (true) ist. - `-1` wird in vielen P...
Eine Division durch null, also 1 : 0, ist mathematisch nicht definiert. Das bedeutet, es gibt kein Ergebnis für diese Rechnung, da das Teilen durch null in der Mathematik nicht erlaubt ist.
Ein Neuntel ist \(\frac{1}{9} \approx 0{,}111\) und ein Elftel ist \(\frac{1}{11} \approx 0{,}0909\). Zwei verschiedene Brüche, die zwischen diesen Werten liegen, sind zum Beispiel: \[ \frac{1}...