Bestimme alpha [0°;90°] für sin 93,5° = sin alpha?

Antwort

Um den Wert von α im Intervall [0°; 90°] zu bestimmen, für den gilt sin(93,5°) = sin(α), kannst du die Eigenschaften der Sinusfunktion nutzen. Da der Sinus eine periodische Funktion ist und im Intervall [0°; 90°] nur positive Werte annimmt, gilt: sin(α) = sin(93,5°) Da 93,5° außerhalb des Intervalls [0°; 90°] liegt, können wir den Sinuswert nutzen, um α zu finden. Der Sinus ist im ersten und zweiten Quadranten positiv. Für den ersten Quadranten gilt: α = 93,5° - 90° = 3,5° Somit ist die Lösung: α = 3,5° Das bedeutet, dass sin(93,5°) = sin(3,5°).

Frage stellen und sofort Antwort erhalten

Verwandte Fragen

Wie berechnet man den Schnittwinkel zwischen der Ebene 2x1 + x2 = 4 und der x1-x3-Ebene?

Um den Winkel zwischen der Ebene \( F: 2x_1 + x_2 = 4 \) und der \( x_1x_3 \)-Ebene zu berechnen, gehst du wie folgt vor: **1. Bestimme die Normalenvektoren:** - Die Ebene \( F \) hat die Gleichung... [mehr]

Wie viele Lösungswege gibt es, um ein Dreieck mit einem Katheter und einem Winkel zu lösen?

Um ein Dreieck zu lösen, also alle Seiten und Winkel zu bestimmen, benötigt man in der Regel mindestens drei Angaben, wobei mindestens eine davon eine Seite sein muss. Deine Frage bezieht si... [mehr]

In welchem Quadranten liegt Winkel alpha, wenn sin(alpha) > 0 und cos(alpha) < 0?

Wenn für einen Winkel \(\alpha\) gilt, dass \(\sin(\alpha) > 0\) und \(\cos(\alpha) < 0\), dann befindet sich \(\alpha\) im **zweiten Quadranten** des Einheitskreises. **Begründung:**... [mehr]