Ja, bei einem Quadrat sind alle Winkel gleich groß. Jeder Winkel misst 90 Grad.
Um den Wert von α im Intervall [0°; 90°] zu bestimmen, für den gilt sin(93,5°) = sin(α), kannst du die Eigenschaften der Sinusfunktion nutzen. Da der Sinus eine periodische Funktion ist und im Intervall [0°; 90°] nur positive Werte annimmt, gilt: sin(α) = sin(93,5°) Da 93,5° außerhalb des Intervalls [0°; 90°] liegt, können wir den Sinuswert nutzen, um α zu finden. Der Sinus ist im ersten und zweiten Quadranten positiv. Für den ersten Quadranten gilt: α = 93,5° - 90° = 3,5° Somit ist die Lösung: α = 3,5° Das bedeutet, dass sin(93,5°) = sin(3,5°).
Ja, bei einem Quadrat sind alle Winkel gleich groß. Jeder Winkel misst 90 Grad.
Um den Sinus von Alpha (α) in einem rechtwinkligen Dreieck zu berechnen, verwendet man die Formel: \[ \sin(α) = \frac{\text{Gegenkathete}}{\text{Hypotenuse}} \] In deinem Fall ist die Ge... [mehr]
In einem rechtwinkligen Dreieck ist der Sinus eines Winkels (in diesem Fall Alpha) definiert als das Verhältnis der Länge der Gegenkathete zur Länge der Hypotenuse. Die Formel lautet:... [mehr]
Um den Sinus von Alpha (α) in einem rechtwinkligen Dreieck zu berechnen, verwendest du die Definition des Sinus: \[ \sin(α) = \frac{\text{Gegenkathete}}{\text{Hypotenuse}} \] In deinem F... [mehr]