Wie groß ist ein Basiswinkel in einem gleichschenkligen Dreieck, wenn der Winkel an der Spitze 6-mal so groß ist?

Antwort

Um die Größe eines Basiswinkels in einem gleichschenkligen Dreieck zu berechnen, bei dem der Winkel an der Spitze 6-mal so groß ist wie ein Basiswinkel, kannst du folgende Schritte befolgen: 1. **Bezeichne die Winkel:** - Sei \( \alpha \) der Basiswinkel. - Der Winkel an der Spitze ist dann \( 6\alpha \). 2. **Summe der Winkel in einem Dreieck:** - Die Summe der Innenwinkel in einem Dreieck beträgt immer \( 180^\circ \). 3. **Gleichung aufstellen:** - Da es sich um ein gleichschenkliges Dreieck handelt, sind die beiden Basiswinkel gleich groß. - Also lautet die Gleichung: \( \alpha + \alpha + 6\alpha = 180^\circ \). 4. **Gleichung lösen:** - Zusammengefasst ergibt das: \( 8\alpha = 180^\circ \). - Teile beide Seiten der Gleichung durch 8: \( \alpha = \frac{180^\circ}{8} \). - Das ergibt: \( \alpha = 22,5^\circ \). Der Basiswinkel ist also \( 22,5^\circ \).

Frage stellen und sofort Antwort erhalten

Verwandte Fragen

Sind bei einer Tautologie alle Winkel gleich groß? Ja oder nein?

Ja, bei einem Quadrat sind alle Winkel gleich groß. Jeder Winkel misst 90 Grad.

Was ist der Sinus von Alpha in einem Dreieck mit Ankathete 2.8 cm, Hypotenuse 4 cm und Gegenkathete 2.8 cm?

Um den Sinus von Alpha (α) in einem rechtwinkligen Dreieck zu berechnen, verwendet man die Formel: \[ \sin(α) = \frac{\text{Gegenkathete}}{\text{Hypotenuse}} \] In deinem Fall ist die Ge... [mehr]

Was ist der Sinus von Alpha in einem Dreieck mit Hypotenuse 2,5 cm, Gegenkathete 3 cm und Ankathete 3,9 cm?

In einem rechtwinkligen Dreieck ist der Sinus eines Winkels (in diesem Fall Alpha) definiert als das Verhältnis der Länge der Gegenkathete zur Länge der Hypotenuse. Die Formel lautet:... [mehr]

Was ist Sin( Alpha) eines Dreiecks mit Hypotenuse 4 cm, Ankathete 3,4 cm und Gegenkathete 2,1 cm?

Um den Sinus von Alpha (α) in einem rechtwinkligen Dreieck zu berechnen, verwendest du die Definition des Sinus: \[ \sin(α) = \frac{\text{Gegenkathete}}{\text{Hypotenuse}} \] In deinem F... [mehr]

Existiert dieses Dreieck? a=8,5cm; b=3,2cm; c=5,2cm?

Um zu überprüfen, ob ein Dreieck mit den Seitenlängen a = 8,5 cm, b = 3,2 cm und c = 5,2 cm existiert, kannst du die Dreiecksungleichung verwenden. Diese besagt, dass die Summe der L&au... [mehr]