Der größte gemeinsame Teiler (ggT) von 445 und 1000 ist 5.
Um die Anzahl der ganzzahligen Quadrate zu bestimmen, die Teiler von \(20^{24}\) sind, müssen wir zunächst die Primfaktorzerlegung von \(20\) durchführen. Die Zahl \(20\) kann als \(20 = 2^2 \cdot 5^1\) geschrieben werden. Daher ergibt sich: \[ 20^{24} = (2^2 \cdot 5^1)^{24} = 2^{48} \cdot 5^{24} \] Ein Teiler von \(20^{24}\) hat die Form \(2^a \cdot 5^b\), wobei \(0 \leq a \leq 48\) und \(0 \leq b \leq 24\). Für einen Teiler, der ein Quadrat ist, müssen sowohl \(a\) als auch \(b\) gerade Zahlen sein. Die möglichen Werte für \(a\) (gerade Zahlen zwischen 0 und 48) sind: \(0, 2, 4, \ldots, 48\). Das sind insgesamt \(25\) Werte (da die Anzahl der geraden Zahlen von \(0\) bis \(48\) durch \(2\) teilbar ist: \(\frac{48}{2} + 1 = 25\)). Die möglichen Werte für \(b\) (gerade Zahlen zwischen 0 und 24) sind: \(0, 2, 4, \ldots, 24\). Das sind insgesamt \(13\) Werte (da die Anzahl der geraden Zahlen von \(0\) bis \(24\) ebenfalls durch \(2\) teilbar ist: \(\frac{24}{2} + 1 = 13\)). Um die Gesamtanzahl der ganzzahligen Quadrate zu berechnen, die Teiler von \(20^{24}\) sind, multiplizieren wir die Anzahl der Möglichkeiten für \(a\) und \(b\): \[ 25 \cdot 13 = 325 \] Somit gibt es insgesamt \(325\) ganzzahlige Quadrate, die Teiler von \(20^{24}\) sind.
Der größte gemeinsame Teiler (ggT) von 445 und 1000 ist 5.
Drei plus vier ergibt sieben.
Hier sind die Zerlegungen der Zahlen in Tausender, Hunderter, Zehner und Einer: a) 5816 = 5000 + 800 + 10 + 6 1495 = 1000 + 400 + 90 + 5 7238 = 7000 + 200 + 30 + 8 4187 = 4000 + 100 + 80 + 7... [mehr]
1 plus 293492841 ergibt 293492842.
27.000 geteilt durch 1.100 ergibt 24,545454545... oder gerundet 24,55.
Um die Rechnung \( \frac{5}{7} + 6 + 7 \) durchzuführen, addiere zuerst die ganzen Zahlen: \( 6 + 7 = 13 \). Dann addiere \( \frac{5}{7} \) zu \( 13 \): \( 13 + \frac{5}{7} = \frac{13 \cdot 7}... [mehr]
Der Überschlag von 13489 bezieht sich in der Regel auf eine grobe Schätzung oder Rundung der Zahl. Wenn du 13489 auf die nächste Tausend runden möchtest, wäre der Übersch... [mehr]
Der Überschlag von 4784 bezieht sich in der Regel auf eine grobe Schätzung oder Rundung. Wenn du den Wert auf die nächste Tausend runden möchtest, wäre der Überschlag 500... [mehr]
Hier sind drei Aufgaben zum Thema "Rationale Zahlen anordnen": 1. Ordne die folgenden rationalen Zahlen der Größe nach: \( \frac{3}{4}, -\frac{1}{2}, 0, \frac{2}{3}, -\frac{3}{4}... [mehr]