Äquivalenzumformungen sind Umformungen von Gleichungen oder Ungleichungen, bei denen die Lösungsmenge erhalten bleibt. Das Ziel ist, die Gleichung so umzuformen, dass sie leichter zu lö... [mehr]
Um die Gleichung \( x:4 - 1 = 9 \) zu lösen, kannst du folgende Äquivalenzumformungen durchführen: 1. Addiere 1 zu beiden Seiten der Gleichung, um die -1 zu eliminieren: \[ x:4 - 1 + 1 = 9 + 1 \] Das vereinfacht sich zu: \[ x:4 = 10 \] 2. Multipliziere beide Seiten der Gleichung mit 4, um die Division durch 4 zu eliminieren: \[ (x:4) \cdot 4 = 10 \cdot 4 \] Das vereinfacht sich zu: \[ x = 40 \] Also ist die Lösung der Gleichung \( x = 40 \).
Äquivalenzumformungen sind Umformungen von Gleichungen oder Ungleichungen, bei denen die Lösungsmenge erhalten bleibt. Das Ziel ist, die Gleichung so umzuformen, dass sie leichter zu lö... [mehr]
Eine Äquivalenzumformung ist eine Umformung einer mathematischen Gleichung oder Aussage, bei der die Lösungsmenge unverändert bleibt. Das bedeutet, dass die ursprüngliche Gleichung... [mehr]
Um die Gleichung \(7 + 3x = 8 + (8x - 6)\) zu lösen, folge diesen Schritten: 1. Vereinfache die rechte Seite der Gleichung: \[ 7 + 3x = 8 + 8x - 6 \] \[ 7 + 3x = 2 + 8x \] 2.... [mehr]
Um den Ausdruck \(1, 5x^2 - 1,5x + 2,5x^2\ zu vereinfachen, kannst du die ähnlichen Terme zusammenfassen. Zuerst die \(x^2\) Terme: \[ 1,5x^2 + 2,5x^2 = 4x^2 \] Dann bleibt der gesamte Ausdru... [mehr]
Die Teiler von 30 sind: 1, 2, 3, 5, 6, 10, 15 und 30.
Die Teiler von 20 sind: 1, 2, 4, 5, 10 und 20.
Ja, ich kann Berechnungen durchführen. Bitte stelle eine konkrete Rechenaufgabe oder Frage, damit ich dir weiterhelfen kann.
Das unbestimmte Integral von \( x \) bezüglich \( x \) lautet: \[ \int x \, dx = \frac{1}{2}x^2 + C \] wobei \( C \) die Integrationskonstante ist.
1020 minus 612 ist 408.
133 + 10.938 = 11.071