(4a-5)(4a+5) ausmultiplizieren?

Antwort

Um den Ausdruck \((4a-5)(4a+5)\) zu multiplizieren, kannst du die Formel für die Differenz der Quadrate verwenden, die lautet: \[ (a-b)(a+b) = a^2 - b^2 \] In diesem Fall ist \(a = 4a\) und \(b = 5\). Daher ergibt sich: \[ (4a-5)(4a+5) = (4a)^2 - (5)^2 \] Das berechnest du wie folgt: \[ (4a)^2 = 16a^2 \] \[ (5)^2 = 25 \] Setze die Ergebnisse in die Formel ein: \[ 16a^2 - 25 \] Das Endergebnis ist also: \[ 16a^2 - 25 \]

KI fragen

Verwandte Fragen

Wie rechnet man den Term −3x² + 15x aus?

Um den Term \(-3x^2 + 15x\) zu vereinfachen oder zu berechnen, gibt es verschiedene Möglichkeiten – je nachdem, was genau gefragt ist: **1. Ausklammern:** Du kannst den gemeinsamen Faktor... [mehr]

(x/2y)^4 ohne Klammer schreiben

\(\left(\frac{x}{2y}\right)^4 = \frac{x^4}{(2y)^4} = \frac{x^4}{16y^4}\)

Wie vereinfacht man (y+1) * (y-1)?

Der Ausdruck \( (y+1) \cdot (y-1) \) lässt sich mit der binomischen Formel vereinfachen: \[ (y+1) \cdot (y-1) = y^2 - 1 \] Das ist die Differenz zweier Quadrate.

(A^3 - b^3)(a^3 + b^3)?

Der Ausdruck \((A^3 - B^3)(A^3 + B^3)\) kann mithilfe der Identität für die Differenz und die Summe von Kuben vereinfacht werden. Zuerst erkennen wir, dass: \[ A^3 - B^3 = (A - B)(A^2 + A... [mehr]