93.008.521
Um die 307376. lexikographische Permutation der Ziffern 0 bis 9 zu finden, kann man die Anzahl der Permutationen für jede Ziffer berechnen und schrittweise die Ziffern auswählen. Die Ziffern sind: 0, 1, 2, 3, 4, 5, 6, 7, 8, . Es gibt insgesamt 10 Ziffern, was bedeutet, dass die Anzahl der Permutationen 10! (Fakultät von 10) beträgt, was 3.628.800 Permutationen ergibt. 1. **Bestimme die Anzahl der Permutationen pro Ziffer**: - Bei der Auswahl der ersten Ziffer gibt es 9! Permutationen für die verbleibenden Ziffern. - 9! = 362880. 2. **Finde die erste Ziffer**: - 307376 / 362880 = 0 (ganzzahlig), was bedeutet, dass die erste Ziffer 0 ist. - Die verbleibenden Ziffern sind jetzt: 1, 2, 3, 4, 5, 6, 7, 8, 9. - Die Position innerhalb der Permutationen mit 0 als erster Ziffer ist 307376. 3. **Wiederhole den Prozess für die nächste Ziffer**: - Es gibt jetzt 9 Ziffern, also 8! Permutationen für die verbleibenden Ziffern. - 8! = 40320. - 307376 / 40320 = 7 (ganzzahlig), was bedeutet, dass die zweite Ziffer 7 ist. - Die verbleibenden Ziffern sind jetzt: 1, 2, 3, 4, 5, 6, 8, 9. - Die Position innerhalb der Permutationen mit 07 als ersten Ziffern ist 307376 - 7 * 40320 = 307376 - 282240 = 25136. 4. **Finde die nächste Ziffer**: - Es gibt jetzt 8 Ziffern, also 7! Permutationen für die verbleibenden Ziffern. - 7! = 5040. - 25136 / 5040 = 4 (ganzzahlig), was bedeutet, dass die dritte Ziffer 4 ist. - Die verbleibenden Ziffern sind jetzt: 1, 2, 3, 5, 6, 8, 9. - Die Position innerhalb der Permutationen mit 074 als ersten Ziffern ist 25136 - 4 * 5040 = 25136 - 20160 = 4976. 5. **Finde die nächste Ziffer**: - Es gibt jetzt 7 Ziffern, also 6! Permutationen für die verbleibenden Ziffern. - 6! = 720. - 4976 / 720 = 6 (ganzzahlig), was bedeutet, dass die vierte Ziffer 9 ist. - Die verbleibenden Ziffern sind jetzt: 1, 2, 3, 5, 6, 8. - Die Position innerhalb der Permutationen mit 0749 als ersten Ziffern ist 4976 - 6 * 720 = 4976 - 4320 = 656. 6. **Finde die nächste Ziffer**: - Es gibt jetzt 6 Ziffern, also 5! Permutationen für die verbleibenden Ziffern. - 5! = 120. - 656 / 120 = 5 (ganzzahlig), was bedeutet, dass die fünfte Ziffer 8 ist. - Die verbleibenden Ziffern sind jetzt: 1, 2, 3, 5, 6. - Die Position innerhalb der Permutationen mit 07498 als ersten Ziffern ist 656 - 5 * 120 = 656 - 600 = 56. 7. **Finde die nächste Ziffer**: - Es gibt jetzt 5 Ziffern, also 4! Permutationen für die verbleibenden Ziffern. - 4! = 24. - 56 / 24 = 2 (ganzzahlig), was bedeutet, dass die sechste Ziffer 3 ist. - Die verbleibenden Ziffern sind jetzt: 1, 2, 5, 6. - Die Position innerhalb der Permutationen mit 074983 als ersten Ziffern ist
Drei plus vier ergibt sieben.
Die 6 CDs können auf **720 verschiedene Arten** im Regal angeordnet werden. Das ergibt sich aus der Anzahl der Permutationen von 6 verschiedenen Objekten, also \( 6! \) (6 Fakultät): \( 6!... [mehr]
Eine permutationsinvariante Aggregation ist ein Begriff aus der Mathematik und dem maschinellen Lernen, insbesondere im Zusammenhang mit der Verarbeitung von Mengen (englisch: "sets"). Sie b... [mehr]
Hier sind die Zerlegungen der Zahlen in Tausender, Hunderter, Zehner und Einer: a) 5816 = 5000 + 800 + 10 + 6 1495 = 1000 + 400 + 90 + 5 7238 = 7000 + 200 + 30 + 8 4187 = 4000 + 100 + 80 + 7... [mehr]
1 plus 293492841 ergibt 293492842.
Der Ausdruck \( n \cdot (n-1) \cdot (n-2) \cdot \ldots \cdot (n-k+1) \) ist das sogenannte **absteigende Produkt** von \( n \) mit \( k \) Faktoren. Es wird auch als **Fakultätsbruch** oder **fal... [mehr]
Der größte gemeinsame Teiler (ggT) von 445 und 1000 ist 5.
27.000 geteilt durch 1.100 ergibt 24,545454545... oder gerundet 24,55.
Um die Rechnung \( \frac{5}{7} + 6 + 7 \) durchzuführen, addiere zuerst die ganzen Zahlen: \( 6 + 7 = 13 \). Dann addiere \( \frac{5}{7} \) zu \( 13 \): \( 13 + \frac{5}{7} = \frac{13 \cdot 7}... [mehr]