Um den kleinsten Vertreter der Äquivalenzklasse \( xRy \) zu finden, bei der \( N_D(x) = N_D(y) \) gilt, müssen wir zunächst verstehen, was \( N_D(n) \) bedeutet. \( N_D(n) \) ist die k... [mehr]
Um den kleinsten Vertreter der Äquivalenzklasse \( xRy \) zu finden, bei der \( N_D(x) = N_D(y) \) gilt, müssen wir zunächst verstehen, was \( N_D(n) \) bedeutet. \( N_D(n) \) ist die k... [mehr]
Um die kleinsten Vertreter der Äquivalenzklasse \( N_D(n) \leq 3 \) zu finden, betrachten wir die Dreieckszahlen, die durch die Formel \( T_m = \frac{m(m+1)}{2} \) für \( m \in \mathbb{N} \)... [mehr]