Das klassische, phasen-unsensitive NOESY-Spektrum (Nuclear Overhauser Effect Spectroscopy) ist in der modernen NMR-Spektroskopie weitgehend durch phasensensitive Varianten ersetzt worden. Der Hauptgru... [mehr]
Ja, das stimmt. In der Kernspinresonanzspektroskopie (NMR) ist das NOESY-Experiment (Nuclear Overhauser Effect SpectroscopY) eine 2D-NMR-Methode, mit der Wechselwirkungen zwischen Protonen (Wasserstoffkernen) detektiert werden, die sich räumlich nahe beieinander befinden (typischerweise innerhalb von etwa 5 Å). Das NOESY-Spektrum zeigt Kreuzsignale (cross peaks) zwischen Protonen, die sich im Raum nahe sind, unabhängig davon, ob sie direkt über chemische Bindungen verbunden sind. Damit ist NOESY ein wichtiges Werkzeug zur Bestimmung der dreidimensionalen Struktur von Molekülen in Lösung, insbesondere von Proteinen und anderen Biomolekülen. Weitere Informationen findest du z.B. hier: https://de.wikipedia.org/wiki/Nuclear_Overhauser_Effect_Spectroscopy
Das klassische, phasen-unsensitive NOESY-Spektrum (Nuclear Overhauser Effect Spectroscopy) ist in der modernen NMR-Spektroskopie weitgehend durch phasensensitive Varianten ersetzt worden. Der Hauptgru... [mehr]
Ja, das kann man erkennen. In einem typischen HSQC-Experiment (Heteronuclear Single Quantum Coherence) in der Lösungs-NMR wird das FID (Free Induction Decay) immer auf dem Protonenkanal (¹H)... [mehr]
Eine direkt detektierte heteronukleare Pulssequenz in der NMR-Spektroskopie ist eine Messmethode, bei der das Signal eines Heterokerns (also eines anderen Kerns als ^1H, z. B. ^13C, ^15N, ^31P) direkt... [mehr]
Eine direkt detektierte Pulssequenz in der 1H-Lösungs-NMR ist eine Messmethode, bei der das Signal des interessierenden Kerns (hier: Proton, also ¹H) nach Anregung durch einen Radiofrequenzp... [mehr]