Wie sieht e^x aus?

Antwort

Die Funktion \( e^x \) ist eine exponentielle Funktion, die eine stetig wachsende Kurve darstellt. Hier sind einige ihrer Eigenschaften: 1. **Graph**: Der Graph von \( e^x \) ist eine stetig steigende Kurve, die für \( x \to -\infty \) gegen 0 geht und für \( x \to \infty \) gegen unendlich wächst. 2. **Y-Achsenabschnitt**: Der Graph schneidet die y-Achse bei \( y = 1 \), da \( e^0 = 1 \). 3. **Wachstum**: Die Funktion wächst exponentiell, was bedeutet, dass sie sehr schnell ansteigt. 4. **Ableitung**: Die Ableitung von \( e^x \) ist \( e^x \), was bedeutet, dass die Steigung der Kurve zu jedem Punkt gleich dem Funktionswert an diesem Punkt ist. Hier ist eine einfache grafische Darstellung: ``` y ^ | * | * | * | * | * | * | * | * | * | * |* +------------------> x ``` Diese Darstellung zeigt, dass die Kurve von links unten nach rechts oben verläuft und dabei immer steiler wird.

Frage stellen und sofort Antwort erhalten

Verwandte Fragen

Welche Aussagen kann man über die Funktion f(x)=e^(x^2) aus dem Graphen der Ableitung v=x^2 ableiten?

Um Aussagen über die Funktion \( f(x) = e^{v(x)} \) zu machen, wobei \( v(x) = x^2 \), betrachten wir zunächst die Ableitung von \( v(x) \). 1. **Ableitung von \( v(x) \)**: \[ v... [mehr]

Wie lautet die dritte Ableitung von f(x)=(4x+1)×e^x?

Um die dritte Ableitung der Funktion \( f(x) = (4x + 1) \cdot e^x \) zu berechnen, verwenden wir die Produktregel und die Ableitungen von \( e^x \). 1. **Erste Ableitung**: \[ f'(x) = (4x... [mehr]

Was sind die Nullstellen von f(x) = (x - 2,5)² + 1?

Um die Nullstellen der Funktion \( f(x) = (x - 2.5)^2 + 1 \) zu finden, setzt man die Funktion gleich null: \[ (x - 2.5)^2 + 1 = 0 \] Zuerst isolieren wir den quadratischen Term: \[ (x - 2.5)^2 = -... [mehr]

Nullstelle von h(x) = x² - 1,5?

Um die Nullstellen der Funktion \( h(x) = x^2 - 1,5 \) zu finden, setzt man die Funktion gleich null: \[ x^2 - 1,5 = 0 \] Das kann umgeformt werden zu: \[ x^2 = 1,5 \] Nun zieht man die Quadra... [mehr]

Wie finde ich die Anzahl der Nullstellen einer quadratischen Funktion?

Um die Anzahl der Nullstellen einer quadratischen Funktion der Form \( f(x) = ax^2 + bx + c \) zu bestimmen, kannst du die Diskriminante \( D \) verwenden, die aus den Koeffizienten \( a \), \( b \) u... [mehr]

Wie zeichnet man den Graphen einer Funktion, z.B. y= 0,5 (x-1,5)²-2?

Um den Graphen der Funktion \( y = 0,5 (x - 1,5)^2 - 2 \) zu zeichnen, folge diesen Schritten: 1. **Bestimme die Scheitelpunktform**: Die Funktion ist bereits in der Scheitelpunktform \( y = a(x - h)... [mehr]

Wie berechne ich die Nullstelle von ab/(x+b)^2?

Um die Nullstelle der Funktion \( f(x) = \frac{ab}{(x+b)^2} \) zu berechnen, setzt man die Funktion gleich null: \[ \frac{ab}{(x+b)^2} = 0 \] Eine Bruchgleichung ist genau dann null, wenn der Zä... [mehr]

Wie überprüft man schnell die Surjektivität einer Funktion?

Um die Surjektivität einer Funktion schnell zu überprüfen, kannst du folgende Schritte befolgen: 1. **Definition verstehen**: Eine Funktion \( f: A \to B \) ist surjektiv, wenn fü... [mehr]

Was ist die Ableitung von ax/(x+b)?

Um die Ableitung der Funktion \( f(x) = \frac{ax}{x + b} \) zu bestimmen, kannst du die Quotientenregel anwenden. Die Quotientenregel besagt, dass die Ableitung einer Funktion der Form \( \frac{u}{v}... [mehr]

Nullstelle von f(x)=(x-1)-ln(x)?

Um die Nullstelle der Funktion \( f(x) = (x - 1) - \ln(x) \) zu finden, setzt man die Funktion gleich null: \[ f(x) = 0 \implies (x - 1) - \ln(x) = 0 \] Das vereinfacht sich zu: \[ x - 1 = \ln(x) \... [mehr]