10 Prozent von 8,83 sind 0,883.
Eine Permutation ist eine Anordnung von Objekten in einer bestimmten Reihenfolge. Um die Anzahl der Permutationen von \( n \) Objekten zu berechnen, verwendet man die Fakultät, die als \( n! \) geschrieben wird. Die Fakultät von \( n \) ist das Produkt aller positiven ganzen Zahlen bis \( n \). Hier ist die allgemeine Formel für die Anzahl der Permutationen von \( n \) Objekten: \[ n! = n \times (n-1) \times (n-2) \times \ldots \times 2 \times 1 \] Beispiel: Wenn du die Permutationen von 3 Objekten (sagen wir A, B und C) berechnen möchtest, dann ist \( n = 3 \). \[ 3! = 3 \times 2 \times 1 = 6 \] Das bedeutet, es gibt 6 verschiedene Möglichkeiten, die Objekte A, B und C anzuordnen. Diese sind: 1. ABC 2. ACB 3. BAC 4. BCA 5. CAB 6. CBA Wenn du eine Teilmenge von \( r \) Objekten aus \( n \) Objekten permutieren möchtest, verwendest du die Formel für die Permutation von \( n \) Objekten, die in \( r \) Positionen angeordnet werden: \[ P(n, r) = \frac{n!}{(n-r)!} \] Beispiel: Wenn du 2 Objekte aus 3 (A, B, C) auswählen und anordnen möchtest, dann ist \( n = 3 \) und \( r = 2 \). \[ P(3, 2) = \frac{3!}{(3-2)!} = \frac{3!}{1!} = \frac{3 \times 2 \times 1}{1} = 6 \] Auch hier gibt es 6 verschiedene Möglichkeiten, 2 Objekte aus 3 auszuwählen und anzuordnen: 1. AB 2. AC 3. BA 4. BC 5. CA 6. CB Diese grundlegenden Konzepte helfen dir, Permutationen zu verstehen und zu berechnen.
10 Prozent von 8,83 sind 0,883.
Gegeben ist das Integral: \[ \int_{0}^{0{,}25} \frac{dx}{\sqrt{x} \cdot (1 - \sqrt{x})} \] Um das Integral zu lösen, bietet sich die Substitution \( u = \sqrt{x} \) an. **Schritt 1: Substituti... [mehr]
Bei drei Würfen mit einem normalen Würfel (6 Seiten) möchtest du wissen, wie groß die Wahrscheinlichkeit ist, dass **alle drei Würfe verschiedene Augenzahlen zeigen**. **L&o... [mehr]
Der Rechenausdruck lautet: (26 + 57) – (87 – 73) Nun berechnen wir Schritt für Schritt: 1. 26 + 57 = 83 2. 87 – 73 = 14 3. 83 – 14 = 69 Das Ergebnis ist **69**.
Hier sind die Lösungen und die Rechenausdrücke ohne Klammern: 1. **17 - (25 - 18)** - Zuerst mit Klammern: 25 - 18 = 7, dann 17 - 7 = **10** - Ohne Klammern: **17 - 25 - 18** - Rec... [mehr]
Um den Prozentsatz zu berechnen, teilst du 2400 durch 41575 und multiplizierst das Ergebnis mit 100: \( \frac{2400}{41575} \times 100 = 5,77 \% \) (gerundet auf zwei Nachkommastellen). 2400 sind als... [mehr]
Die 6 CDs können auf **720 verschiedene Arten** im Regal angeordnet werden. Das ergibt sich aus der Anzahl der Permutationen von 6 verschiedenen Objekten, also \( 6! \) (6 Fakultät): \( 6!... [mehr]
Eine permutationsinvariante Aggregation ist ein Begriff aus der Mathematik und dem maschinellen Lernen, insbesondere im Zusammenhang mit der Verarbeitung von Mengen (englisch: "sets"). Sie b... [mehr]
Um den Prozentsatz zu berechnen, teilst du die Zahl 8912 durch 38711 und multiplizierst das Ergebnis mit 100: \[ \text{Prozentsatz} = \left(\frac{8912}{38711}\right) \times 100 \] Rechnung: \[ \fra... [mehr]
Um die Anzahl der Möglichkeiten zu berechnen, drei von 32 unterschiedlichen Emojis zu kombinieren, muss zunächst geklärt werden, ob die Reihenfolge der Emojis eine Rolle spielt: - **Oh... [mehr]