Um eine Funktion in der Mitte einer anderen Gleichung zu verwenden, setzt du sie einfach an die gewünschte Stelle in die Gleichung ein. Das nennt man „Einsetzen“ oder „Substitut... [mehr]
Um zu überprüfen, ob die gegebene Funktion \( f(x) 2x^2 + x + 6 \) den Wertebereich \( W_f = [0, 96] \) hat und ob die Umkehrfunktion \( f^{-1}(x) = -2 - 1 + \sqrt{x^2} \) korrekt ist, gehen wir wie folgt vor: 1. **Bestimmung des Wertebereichs von \( f \)**: - Die Funktion \( f(x) \) ist eine Parabel, die nach oben geöffnet ist, da der Koeffizient von \( x^2 \) positiv ist. - Um den Wertebereich zu bestimmen, berechnen wir den Scheitelpunkt der Parabel. Der Scheitelpunkt \( x_s \) kann mit der Formel \( x_s = -\frac{b}{2a} \) gefunden werden, wobei \( a = 2 \) und \( b = 8 \): \[ x_s = -\frac{8}{2 \cdot 2} = -2 \] - Da \( x_s = -2 \) nicht im Intervall \([-1, 5]\) liegt, müssen wir die Funktionswerte an den Randpunkten des Intervalls untersuchen: - \( f(-1) = 2(-1)^2 + 8(-1) + 6 = 2 - 8 + 6 = 0 \) - \( f(5) = 2(5)^2 + 8(5) + 6 = 50 + 40 + 6 = 96 \) - Somit ist der Wertebereich \( W_f = [0, 96] \). 2. **Überprüfung der Umkehrfunktion**: - Um die Umkehrfunktion zu finden, setzen wir \( y = f(x) \): \[ y = 2x^2 + 8x + 6 \] - Um \( x \) in Abhängigkeit von \( y \) zu isolieren, stellen wir die Gleichung um: \[ 2x^2 + 8x + (6 - y) = 0 \] - Diese quadratische Gleichung kann mit der Mitternachtsformel gelöst werden: \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-8 \pm \sqrt{8^2 - 4 \cdot 2 \cdot (6 - y)}}{2 \cdot 2} \] \[ = \frac{-8 \pm \sqrt{64 - 8(6 - y)}}{4} = \frac{-8 \pm \sqrt{64 - 48 + 8y}}{4} = \frac{-8 \pm \sqrt{16 + 8y}}{4} \] \[ = \frac{-8 \pm 2\sqrt{2(2 + y)}}{4} = \frac{-2 \pm \sqrt{2(2 + y)}}{2} \] - Da wir nur den positiven Zweig für die Umkehrfunktion betrachten (da \( f \) im gegebenen Intervall monoton ist), erhalten wir: \[ f^{-1}(y) = -2 + \frac{\sqrt{2(2 + y)}}{2} \] Die gegebene Umkehrfunktion \( f^{-1}(x) = -2 - 1 + \sqrt{x^2} \) scheint nicht korrekt zu sein. Die korrekte Umkehrfunktion ist also nicht wie angegeben. Zusammenfassend ist der Wertebereich \( W_f = [0, 96] \) korrekt, aber die angegebene Umkehrfunktion ist nicht richtig.
Um eine Funktion in der Mitte einer anderen Gleichung zu verwenden, setzt du sie einfach an die gewünschte Stelle in die Gleichung ein. Das nennt man „Einsetzen“ oder „Substitut... [mehr]
Um die Ableitung der Funktion \[ f(x) = \frac{(x-3)(x+2)}{(x+1)(x+5)} \] zu berechnen, verwendest du die Quotientenregel: \[ f'(x) = \frac{u'(x) \cdot v(x) - u(x) \cdot v'(x)}{[v(x... [mehr]
Eine Integralfunktion ist eine Funktion, die durch das unbestimmte Integral einer gegebenen Funktion \( f(x) \) entsteht. Genauer gesagt: Ist \( f(x) \) eine Funktion, dann ist eine Integralfunktion \... [mehr]
Typischer Wortschatz im Zusammenhang mit der Laplace-Transformation umfasst folgende Begriffe: - **Laplace-Transformation**: Integraltransformation, die eine Funktion \( f(t) \) in eine Funktion \( F... [mehr]
Die Produktregel ist eine wichtige Regel in der Differentialrechnung. Sie hilft dir, die Ableitung eines Produkts aus zwei Funktionen zu berechnen. Stell dir vor, du hast zwei Funktionen: f(x) und g(... [mehr]
Gesucht ist eine Funktion \( f(x) \), die - ein Maximum bei \( (332.0822,\ 0.83269) \), - ein Minimum bei \( (332.2387,\ -0.82764) \) hat, - und für \( x \to \infty \) gegen die x-Achse (also \(... [mehr]
Ein Beispiel für eine Funktion, die ein Minimum und ein Maximum besitzt und auf beiden Seiten (für \( x \to -\infty \) und \( x \to +\infty \)) die x-Achse als Asymptote hat, ist die Funktio... [mehr]
Eine ganzrationale Funktion ist eine Funktion, die durch ein Polynom dargestellt wird. Das bedeutet, sie hat die Form f(x) = aₙxⁿ + aₙ₋₁xⁿ⁻¹ + ... + a₁x + a₀ Dabei sind a₀, a₁, ..., aₙ reelle Z... [mehr]
Die zweite Wurzel von \( x \) ist gleich \( \sqrt{x} \) oder \( x^{1/2} \). Die erste Ableitung davon ist: \[ \frac{d}{dx} \left( x^{1/2} \right) = \frac{1}{2} x^{-1/2} = \frac{1}{2\sqrt{x}} \] **A... [mehr]
Eine Funktion \( f(x) \) wird längs der x-Achse gestaucht oder gestreckt, indem du das Argument der Funktion mit einem Faktor \( a \) multiplizierst: - **Streckung entlang der x-Achse:** \(... [mehr]