Um eine Funktion in der Mitte einer anderen Gleichung zu verwenden, setzt du sie einfach an die gewünschte Stelle in die Gleichung ein. Das nennt man „Einsetzen“ oder „Substitut... [mehr]
Um eine Wertetabelle für die quadratische Funktion \( y = ax^2 \) zu erstellen, benötigst du einen Wert für \( a \). Da dieser nicht angegeben ist, werde ich die Tabelle für \( a = 1 \) erstellen. Du kannst den Wert von \( a \) später anpassen, wenn du möchtest. ist die Wertetabelle für die x-Werte 4, -2 und -3: | x | y = ax² (a=1) | |-----|-----------------| | 4 | 16 | | -2 | 4 | | -3 | 9 | Wenn du einen anderen Wert für \( a \) verwenden möchtest, multipliziere einfach die y-Werte mit diesem Wert.
Um eine Funktion in der Mitte einer anderen Gleichung zu verwenden, setzt du sie einfach an die gewünschte Stelle in die Gleichung ein. Das nennt man „Einsetzen“ oder „Substitut... [mehr]
Um die Ableitung der Funktion \[ f(x) = \frac{(x-3)(x+2)}{(x+1)(x+5)} \] zu berechnen, verwendest du die Quotientenregel: \[ f'(x) = \frac{u'(x) \cdot v(x) - u(x) \cdot v'(x)}{[v(x... [mehr]
Eine Integralfunktion ist eine Funktion, die durch das unbestimmte Integral einer gegebenen Funktion \( f(x) \) entsteht. Genauer gesagt: Ist \( f(x) \) eine Funktion, dann ist eine Integralfunktion \... [mehr]
Um herauszufinden, wie viel Prozent 24 von 38,5 sind, kannst du folgende Rechnung machen: \[ \text{Prozent} = \frac{24}{38,5} \times 100 \] \[ \text{Prozent} = \frac{24}{38,5} \times 100 \approx 62,... [mehr]
Typischer Wortschatz im Zusammenhang mit der Laplace-Transformation umfasst folgende Begriffe: - **Laplace-Transformation**: Integraltransformation, die eine Funktion \( f(t) \) in eine Funktion \( F... [mehr]
Die Produktregel ist eine wichtige Regel in der Differentialrechnung. Sie hilft dir, die Ableitung eines Produkts aus zwei Funktionen zu berechnen. Stell dir vor, du hast zwei Funktionen: f(x) und g(... [mehr]
Gesucht ist eine Funktion \( f(x) \), die - ein Maximum bei \( (332.0822,\ 0.83269) \), - ein Minimum bei \( (332.2387,\ -0.82764) \) hat, - und für \( x \to \infty \) gegen die x-Achse (also \(... [mehr]
Ein Beispiel für eine Funktion, die ein Minimum und ein Maximum besitzt und auf beiden Seiten (für \( x \to -\infty \) und \( x \to +\infty \)) die x-Achse als Asymptote hat, ist die Funktio... [mehr]
Eine ganzrationale Funktion ist eine Funktion, die durch ein Polynom dargestellt wird. Das bedeutet, sie hat die Form f(x) = aₙxⁿ + aₙ₋₁xⁿ⁻¹ + ... + a₁x + a₀ Dabei sind a₀, a₁, ..., aₙ reelle Z... [mehr]
Um den Prozentsatz zu berechnen, teilst du 750 durch 12.945 und multiplizierst das Ergebnis mit 100: \( \frac{750}{12.945} \times 100 = 5,79 \% \) 750 sind also etwa **5,79 %** von 12.945.