Um die Schnittpunkte der linearen Funktion \( y = -\frac{1}{2}x - 5.25 \) zu bestimmen, benötigst du eine zweite Funktion, mit der du die Schnittpunkte berechnen kannst. Wenn du beispielsweise di... [mehr]
Die Funktion \( f(x) = 3x - 0,5 \) ist eine lineare Funktion. Da der Koeffizient von \( x \) (also 3) ungleich null ist, ist die Funktion für alle reellen Zahlen definiert. Die Wertemenge dieser Funktion ist daher die Menge aller reellen Zahlen, also: \[ \text{Wertemenge} = \mathbb{R} \] Das bedeutet, dass \( f(x) \) jeden reellen Wert annehmen kann.
Um die Schnittpunkte der linearen Funktion \( y = -\frac{1}{2}x - 5.25 \) zu bestimmen, benötigst du eine zweite Funktion, mit der du die Schnittpunkte berechnen kannst. Wenn du beispielsweise di... [mehr]
Um die Schnittpunkte der linearen Funktion \( y = -\frac{1}{2}x - 5.25 \) zu bestimmen, müssen wir die Schnittpunkte mit den Achsen finden. 1. **Schnittpunkt mit der y-Achse**: Dieser Punkt trit... [mehr]
Um die Nullstellen der Funktion \( f(x) = (x - 2.5)^2 + 1 \) zu finden, setzt man die Funktion gleich null: \[ (x - 2.5)^2 + 1 = 0 \] Zuerst isolieren wir den quadratischen Term: \[ (x - 2.5)^2 = -... [mehr]
Um die Nullstellen der Funktion \( h(x) = x^2 - 1,5 \) zu finden, setzt man die Funktion gleich null: \[ x^2 - 1,5 = 0 \] Das kann umgeformt werden zu: \[ x^2 = 1,5 \] Nun zieht man die Quadra... [mehr]
Um die Anzahl der Nullstellen einer quadratischen Funktion der Form \( f(x) = ax^2 + bx + c \) zu bestimmen, kannst du die Diskriminante \( D \) verwenden, die aus den Koeffizienten \( a \), \( b \) u... [mehr]
Um den Graphen der Funktion \( y = 0,5 (x - 1,5)^2 - 2 \) zu zeichnen, folge diesen Schritten: 1. **Bestimme die Scheitelpunktform**: Die Funktion ist bereits in der Scheitelpunktform \( y = a(x - h)... [mehr]
Um die Nullstelle der Funktion \( f(x) = \frac{ab}{(x+b)^2} \) zu berechnen, setzt man die Funktion gleich null: \[ \frac{ab}{(x+b)^2} = 0 \] Eine Bruchgleichung ist genau dann null, wenn der Zä... [mehr]
Um die Surjektivität einer Funktion schnell zu überprüfen, kannst du folgende Schritte befolgen: 1. **Definition verstehen**: Eine Funktion \( f: A \to B \) ist surjektiv, wenn fü... [mehr]
Um die Ableitung der Funktion \( f(x) = \frac{ax}{x + b} \) zu bestimmen, kannst du die Quotientenregel anwenden. Die Quotientenregel besagt, dass die Ableitung einer Funktion der Form \( \frac{u}{v}... [mehr]
Um die Nullstelle der Funktion \( f(x) = (x - 1) - \ln(x) \) zu finden, setzt man die Funktion gleich null: \[ f(x) = 0 \implies (x - 1) - \ln(x) = 0 \] Das vereinfacht sich zu: \[ x - 1 = \ln(x) \... [mehr]