Hat die Funktion f:[−1,5]⟶R mit f(x)=2x²+8x+6 den Wertebereich Wf=[0,96] und ist sie nicht umkehrbar?

Antwort

Um zu überprüfen, ob die Funktion \( f(x) = 2^2 + x + 6 \) auf dem Intervall \([-1, 5]\) umkehrbar ist, müssen wir zunächst den Wertebereich der Funktion bestimmen und dann die Monotonie analysieren. 1. **Bestimmung des Wertebereichs**: Die Funktion ist eine Parabel, die nach oben geöffnet ist, da der Koeffizient von \( x^2 \) positiv ist Um den Wertebereich zu finden, berechnen wir die Funktionswerte an den Randpunkten des Intervalls und den Scheitelpunkt. - Funktionswert an \( x = -1 \): \[ f(-1) = 2(-1)^2 + 8(-1) + 6 = 2 - 8 + 6 = 0 \] - Funktionswert an \( x = 5 \): \[ f(5) = 2(5)^2 + 8(5) + 6 = 2 \cdot 25 + 40 + 6 = 50 + 40 + 6 = 96 \] - Der Scheitelpunkt der Parabel kann mit der Formel \( x = -\frac{b}{2a} \) gefunden werden: \[ x = -\frac{8}{2 \cdot 2} = -2 \] Da \( -2 \) nicht im Intervall \([-1, 5]\) liegt, betrachten wir nur die Randwerte. Der Wertebereich ist also \( W_f = [0, 96] \). 2. **Monotonie**: Um zu überprüfen, ob die Funktion umkehrbar ist, müssen wir feststellen, ob sie monoton ist. Dazu betrachten wir die Ableitung: \[ f'(x) = 4x + 8 \] Setzen wir die Ableitung gleich null, um kritische Punkte zu finden: \[ 4x + 8 = 0 \implies x = -2 \] Da \( f'(-2) < 0 \) für \( x < -2 \) und \( f'(-2) > 0 \) für \( x > -2 \), ist die Funktion im Intervall \([-1, 5]\) nicht monoton, da sie an der Stelle \( x = -2 \) einen Wendepunkt hat. Da die Funktion nicht monoton ist, ist sie nicht umkehrbar auf dem gegebenen Intervall. Zusammenfassend ist die Aussage korrekt: \( f:[-1,5] \to W_f \) ist nicht umkehrbar.

Frage stellen und sofort Antwort erhalten

Verwandte Fragen

Was sind die Nullstellen von f(x) = (x - 2,5)² + 1?

Um die Nullstellen der Funktion \( f(x) = (x - 2.5)^2 + 1 \) zu finden, setzt man die Funktion gleich null: \[ (x - 2.5)^2 + 1 = 0 \] Zuerst isolieren wir den quadratischen Term: \[ (x - 2.5)^2 = -... [mehr]

Nullstelle von h(x) = x² - 1,5?

Um die Nullstellen der Funktion \( h(x) = x^2 - 1,5 \) zu finden, setzt man die Funktion gleich null: \[ x^2 - 1,5 = 0 \] Das kann umgeformt werden zu: \[ x^2 = 1,5 \] Nun zieht man die Quadra... [mehr]

Wie finde ich die Anzahl der Nullstellen einer quadratischen Funktion?

Um die Anzahl der Nullstellen einer quadratischen Funktion der Form \( f(x) = ax^2 + bx + c \) zu bestimmen, kannst du die Diskriminante \( D \) verwenden, die aus den Koeffizienten \( a \), \( b \) u... [mehr]

Wie zeichnet man den Graphen einer Funktion, z.B. y= 0,5 (x-1,5)²-2?

Um den Graphen der Funktion \( y = 0,5 (x - 1,5)^2 - 2 \) zu zeichnen, folge diesen Schritten: 1. **Bestimme die Scheitelpunktform**: Die Funktion ist bereits in der Scheitelpunktform \( y = a(x - h)... [mehr]

Wie berechne ich die Nullstelle von ab/(x+b)^2?

Um die Nullstelle der Funktion \( f(x) = \frac{ab}{(x+b)^2} \) zu berechnen, setzt man die Funktion gleich null: \[ \frac{ab}{(x+b)^2} = 0 \] Eine Bruchgleichung ist genau dann null, wenn der Zä... [mehr]

Wie überprüft man schnell die Surjektivität einer Funktion?

Um die Surjektivität einer Funktion schnell zu überprüfen, kannst du folgende Schritte befolgen: 1. **Definition verstehen**: Eine Funktion \( f: A \to B \) ist surjektiv, wenn fü... [mehr]

Was ist die Ableitung von ax/(x+b)?

Um die Ableitung der Funktion \( f(x) = \frac{ax}{x + b} \) zu bestimmen, kannst du die Quotientenregel anwenden. Die Quotientenregel besagt, dass die Ableitung einer Funktion der Form \( \frac{u}{v}... [mehr]

Nullstelle von f(x)=(x-1)-ln(x)?

Um die Nullstelle der Funktion \( f(x) = (x - 1) - \ln(x) \) zu finden, setzt man die Funktion gleich null: \[ f(x) = 0 \implies (x - 1) - \ln(x) = 0 \] Das vereinfacht sich zu: \[ x - 1 = \ln(x) \... [mehr]

Was ist der Mittelwertsatz für f(x) = -1/3x^3 + 1/4x^2 + 3x + 2?

Der Mittelwertsatz der Differentialrechnung besagt, dass für eine Funktion \( f \), die auf einem geschlossenen Intervall \([a, b]\) stetig und auf dem offenen Intervall \((a, b)\) differenzierba... [mehr]

Welche Werte haben a, d und e in der Funktion f(x) = a(x-d)(x-e)?

Um die Werte für \( a \), \( d \) und \( e \) anzugeben, benötige ich mehr Informationen über die Funktion \( f(x) \). Zum Beispiel wären spezifische Punkte, durch die die Funktion... [mehr]