Was ist die Stirlingformel?

Antwort

Die Stirling-Formel ist eine mathematische Approximation für die Fakultät einer großen Zahl \( n \). Sie lautet: \[ n! \sim \sqrt{2 \pi n} \left( \frac{n}{e} \right)^n \] Hierbei ist \( e \) die Eulersche Zahl (ungefähr 2,71828) und \( \pi \) die Kreiszahl (ungefähr 3,14159). Die Formel wird häufig in der Kombinatorik und der Statistik verwendet, um Berechnungen mit großen Fakultäten zu vereinfachen. Sie zeigt, dass die Fakultät von \( n \) exponentiell wächst und gibt eine gute Näherung für große Werte von \( n \).

Frage stellen und sofort Antwort erhalten

Verwandte Fragen

(n-k)! in Produktform schreiben?

Die Produkteschreibweise für \((n-k)!\) lautet: \[ (n-k)! = \prod_{i=1}^{n-k} i \] Das bedeutet: Multipliziere alle natürlichen Zahlen von 1 bis \(n-k\) miteinander.

Wie schreibt man das Produkt n · (n-1) · (n-2) … (n-k+1) als Bruch mit Fakultäten (n!/(n-k)!)? Zeige alle Schritte.

Gegeben ist der Term: \[ n \cdot (n-1) \cdot (n-2) \cdots (n-k+1) \] Du möchtest zeigen, wie man diesen Term als \(\frac{n!}{(n-k)!}\) schreiben kann. Hier sind die Schritte: --- **1. Schreib... [mehr]

Wie wird n*(n-1)*...*(n-k+1)/k! zu n!/(k!*(n-k)!) umgeformt?

Die beiden Ausdrücke 1. \(\frac{n \cdot (n-1) \cdot (n-2) \cdots (n-k+1)}{k!}\) 2. \(\frac{n!}{k! \cdot (n-k)!}\) sind tatsächlich **gleichwertig**. Der zweite Ausdruck ist die bekannte Fo... [mehr]

Wie hängt das Produkt n*(n-1)*(n-2)*...*(n-k+1) mit n! zusammen?

Der Ausdruck \( n \cdot (n-1) \cdot (n-2) \cdot \ldots \cdot (n-k+1) \) ist das sogenannte **absteigende Produkt** von \( n \) mit \( k \) Faktoren. Es wird auch als **Fakultätsbruch** oder **fal... [mehr]

Wie hängt das Produkt n*(n-1)*(n-2)*…*(n-k+1) mit n! zusammen?

Der Ausdruck \( n \cdot (n-1) \cdot (n-2) \cdot \ldots \cdot (n-k+1) \) ist das Produkt der \( k \) aufeinanderfolgenden Zahlen von \( n \) abwärts. Das ist genau die Anzahl der Möglichkeite... [mehr]