Was bedeutet \cdot?

Antwort

Das Symbol \(\cdot\) wird in der Mathematik häufig verwendet, um die Multiplikation darzustellen. Es wird oft eingesetzt, um Verwirrung mit dem Buchstaben "x" zu vermeiden, insbesondere in algebraischen Ausdrücken oder bei der Darstellung von Vektoren. Zum Beispiel bedeutet \(a \cdot b\) das Produkt von \(a\) und \(b\). In der linearen Algebra wird es auch verwendet, um das Skalarprodukt zwischen Vektoren zu kennzeichnen.

Frage stellen und sofort Antwort erhalten

Verwandte Fragen

Wurzel von 54 mal 6 durch 3 mal 48?

Um die Berechnung durchzuführen, folge diesen Schritten: 1. Berechne die Wurzel von 54: \(\sqrt{54} = \sqrt{9 \times 6} = 3\sqrt{6}\) 2. Multipliziere das Ergebnis mit 6: \(3\sqrt{6}... [mehr]

Wie macht man Überschlagsrechnungen?

Überschlagsrechnungen sind eine nützliche Methode, um schnell eine ungefähre Vorstellung von einem Ergebnis zu bekommen, ohne genaue Berechnungen durchführen zu müssen. Hier s... [mehr]

(5y-1)(5y+1) berechnen?

Um den Ausdruck \((5y-1)(5y+1)\) zu multiplizieren, kannst du die Formel für die Differenz der Quadrate verwenden, die lautet: \[ a^2 - b^2 = (a-b)(a+b) \] In diesem Fall ist \(a = 5y\) und \(... [mehr]

(3x+2)(3x-2) ausmultiplizieren.

Um den Ausdruck \((3x+2)(3x-2)\) zu multiplizieren, kannst du die Formel für die Differenz der Quadrate verwenden, die besagt, dass \((a+b)(a-b) = a^2 - b^2\). Hier ist \(a = 3x\) und \(b = 2\).... [mehr]

Was ist 1/2 mal 5?

1/2 mal fünf ergibt 2,5.

Was ist 3x*x?

Die Gleichung \(3x \cdot x\) kann vereinfacht werden zu \(3x^2\).

(5-a) • (12a-5b) multiplizieren und vereinfachen.

Um den Ausdruck \((5-a) \cdot (12a-5b)\) zu multiplizieren, verwenden wir die distributive Eigenschaft (auch bekannt als das Ausmultiplizieren). 1. Multipliziere \(5\) mit beiden Termen in der zweit... [mehr]

Was ist der Überschlag von 13489?

Der Überschlag von 13489 bezieht sich in der Regel auf eine grobe Schätzung oder Rundung der Zahl. Wenn du 13489 auf die nächste Tausend runden möchtest, wäre der Übersch... [mehr]

Nenne zwei Aufgaben zu positiven und negativen Zahlen beim Multiplizieren und Dividieren.

Hier sind zwei Aufgaben zum Thema negative und positive Zahlen multiplizieren und dividieren: 1. Multipliziere: \(-7 \times 5\) 2. Dividiere: \(-24 \div 6\) Lösungen: 1. \(-7 \times 5 = -35\)... [mehr]

8 ⋅ (–1,9) = ?

8 ⋅ (–1,9) = –15,2.