Nenne eine vierstellige Zahl, die durch 9 und 12 teilbar ist.

Antwort

Eine vierstellige Zahl, die sowohl durch 9 als auch durch 12 teilbar ist, muss auch durch das kleinste gemeinsame Vielfache (kgV) dieser beiden Zahlen teilbar sein. Das kgV von 9 und 12 ist 36. Die kleinste vierstellige Zahl ist 1000. Um die nächstgrößere Zahl zu finden, die durch 36 teilbar ist, teilst du 1000 durch 36 und rundest auf die nächste ganze Zahl: 1000 ÷ 36 ≈ 27,78 → aufgerundet auf 28. Nun multiplizierst du 28 mit 36: 28 × 36 = 1008. Die Zahl 1008 ist also eine vierstellige Zahl, die durch 9 und 12 teilbar ist.

Frage stellen und sofort Antwort erhalten

Verwandte Fragen

Wie stellt man 20 als Bruch dar?

Die Zahl 20 kann als Bruch geschrieben werden, indem du sie als Zähler und 1 als Nenner verwendest: \[ 20 = \frac{20}{1} \] Das ist die Darstellung von 20 als Bruch.

Wie kann man die Zahl 3 ersetzen?

Deine Frage ist unklar. Bitte stelle eine klare und präzise Frage.

Welche dreistellige Zahl hat die Quersumme 12 und ergibt nach Ziffernumkehr eine um 594 größere Zahl?

Bezeichnen wir die dreistellige Zahl als \( abc \), wobei \( a, b, c \) die Ziffern sind (und \( a \neq 0 \)). Die Zahl selbst ist dann: \( 100a + 10b + c \) Die Quersumme ist: \( a + b + c = 1... [mehr]

Was ist 0,5 als Bruch?

0,5 als Bruch kann als 1/2 dargestellt werden.

Was ist das Ergebnis von 2/3 + 2/3 als gemischte Zahl?

Die Summe von \( \frac{2}{3} + \frac{2}{3} \) ergibt \( \frac{4}{3} \). Als gemischte Zahl ausgedrückt ist das \( 1 \frac{1}{3} \).

3 ⋅ (– 1,6) = ?

3 ⋅ (–1,6) = –4,8.

xRy: Wenn (x−y) durch 8 teilbar ist, was sind die kleinsten Vertreter der Äquivalenzklasse?

Die Relation \( xRy \) definiert eine Äquivalenzrelation, bei der \( x \) und \( y \) in Relation zueinander, wenn die Differenz \( (x - y) \) durch 8 teilbar ist. Das bedeutet, dass \( x \) und... [mehr]

Was sind die kleinsten Vertreter von xRy, wobei σ(x)−σ(y) durch 5 teilbar ist?

Um die kleinsten Vertreter der Relation \( xRy \) zu finden, bei der \( \sigma(x) - \sigma(y) \) durch 5 teilbar ist, betrachten wir die Werte von \( \sigma(n) \) für die ersten natürlichen... [mehr]