Hier sind die Berechnungen und jeweils eine Überschlagsrechnung zur Kontrolle: **a) 875 - 243** Rechnung: 875 - 243 = **632** Überschlag: 875 ≈ 900 243 ≈ 250 900 - 250... [mehr]
Hier sind die Berechnungen mit gerundeten Ergebnissen: a) 23 766 – 12 487 – 6 578 = 23 766 – 12 487 = 11 279 11 279 – 6 578 = 4 701 Gerundet auf ganze Tausender: **5 000** b) 139 567 – 101 010 – 5 370 = 139 567 – 101 010 = 38 557 38 557 – 5 370 = 33 187 Gerundet auf ganze Tausender: **33 000** c) 897 533 – 120 159 – 760 231 = 897 533 – 120 159 = 777 374 777 374 – 760 231 = 17 143 Gerundet auf ganze Tausender: **17 000**
Hier sind die Berechnungen und jeweils eine Überschlagsrechnung zur Kontrolle: **a) 875 - 243** Rechnung: 875 - 243 = **632** Überschlag: 875 ≈ 900 243 ≈ 250 900 - 250... [mehr]
Hier sind die Lösungen zu den Aufgaben, jeweils mit Überschlag (grobe Schätzung) und exakter Rechnung: a) 345 + 452 Überschlag: 350 + 450 = 800 Exakt: 345 + 452 = 797 b) 781... [mehr]
Hier sind die Rechnungen stellengerecht untereinander geschrieben und berechnet: 1. 21,91 − 17,82 = 4,09 2. 0,932 + 0,760 = 1,692 3. 0,7653 − 0,2750 = 0,... [mehr]
Um 19 Prozent zu 2187 zu addieren, berechnest du zunächst 19 % von 2187: 2187 × 0,19 = 415,53 Dann addierst du diesen Wert zu 2187: 2187 + 415,53 = 2602,53 Das Ergebnis ist **2602,53**.
Um die zurückgelegte Strecke bei einer Geschwindigkeit von 208 km/h für 0,8 Sekunden zu berechnen, kannst du die Formel für die Strecke verwenden: \[ \text{Strecke} = \text{Geschwindig... [mehr]
Die 4. Wurzel aus \( \frac{1}{16} \) ist \( \frac{1}{2} \). Dies lässt sich so erklären: \[ \frac{1}{16} = \left( \frac{1}{2} \right)^4 \] Daher ist die 4. Wurzel von \( \frac{1}{16} \) g... [mehr]
Um die Brüche zu subtrahieren, bringe sie auf einen gemeinsamen Nenner. In diesem Fall ist der Nenner bereits gleich (14): \[ \frac{9}{14} - \frac{2}{14} = \frac{9 - 2}{14} = \frac{7}{14} \] Je... [mehr]
3/7 - 3/7 = 0.
Um die rationalen Zahlen \((-6,6)\) und \((+1,2)\) zu subtrahieren subtrahierst du die entsprechenden Werte: \[ (-6,6) - (+1,2) = (-6 - 1, 6 - 2) = (-7, 4) \] Das Ergebnis ist \((-7, 4)\).
Die Berechnung der rationalen Zahlen \((-40) - (+12)\) erfolgt wie folgt: \[ -40 - 12 = -40 + (-12) = -52 \] Das Ergebnis ist \(-52\).