Um die Anzahl der Nullstellen einer quadratischen Funktion der Form \( f(x) = ax^2 + bx + c \) zu bestimmen, kannst du die Diskriminante \( D \) verwenden, die aus den Koeffizienten \( a \), \( b \) u... [mehr]
Eine quadratische Funktion kann maximal zwei Schnittpunkte mit der x-Achse haben. Diese Schnittpunkte entsprechen den Lösungen der Gleichung \( ax^2 + bx + c = 0 \), wobei \( a \), \( b \) und \( c \) die Koeffizienten der Funktion sind. Je nach Diskriminante \( D = b^2 - 4ac \) kann es folgende Fälle geben: 1. **Zwei verschiedene Schnittpunkte**: Wenn \( D > 0 \). 2. **Einen Schnittpunkt**: Wenn \( D = 0 \) (der Scheitelpunkt liegt auf der x-Achse). 3. **Keine Schnittpunkte**: Wenn \( D < 0 \). Somit ist die maximale Anzahl der Schnittpunkte mit der x-Achse zwei.
Um die Anzahl der Nullstellen einer quadratischen Funktion der Form \( f(x) = ax^2 + bx + c \) zu bestimmen, kannst du die Diskriminante \( D \) verwenden, die aus den Koeffizienten \( a \), \( b \) u... [mehr]
Um die Schnittpunkte der linearen Funktion \( y = -\frac{1}{2}x - 5.25 \) zu bestimmen, benötigst du eine zweite Funktion, mit der du die Schnittpunkte berechnen kannst. Wenn du beispielsweise di... [mehr]
Um die Schnittpunkte der linearen Funktion \( y = -\frac{1}{2}x - 5.25 \) zu bestimmen, müssen wir die Schnittpunkte mit den Achsen finden. 1. **Schnittpunkt mit der y-Achse**: Dieser Punkt trit... [mehr]
Um die Nullstellen der Funktion \( f(x) = (x - 2.5)^2 + 1 \) zu finden, setzt man die Funktion gleich null: \[ (x - 2.5)^2 + 1 = 0 \] Zuerst isolieren wir den quadratischen Term: \[ (x - 2.5)^2 = -... [mehr]
Um die Nullstellen der Funktion \( h(x) = x^2 - 1,5 \) zu finden, setzt man die Funktion gleich null: \[ x^2 - 1,5 = 0 \] Das kann umgeformt werden zu: \[ x^2 = 1,5 \] Nun zieht man die Quadra... [mehr]
Um den Graphen der Funktion \( y = 0,5 (x - 1,5)^2 - 2 \) zu zeichnen, folge diesen Schritten: 1. **Bestimme die Scheitelpunktform**: Die Funktion ist bereits in der Scheitelpunktform \( y = a(x - h)... [mehr]
Die Diskriminante einer quadratischen Gleichung der Form \( ax^2 + px + q = 0 \) wird durch die Formel \( D = p^2 - 4aq \ bestimmt. Die Diskriminante gibt Auskunft über die Art der Lösunge... [mehr]
Um die Nullstelle der Funktion \( f(x) = \frac{ab}{(x+b)^2} \) zu berechnen, setzt man die Funktion gleich null: \[ \frac{ab}{(x+b)^2} = 0 \] Eine Bruchgleichung ist genau dann null, wenn der Zä... [mehr]
Um die Surjektivität einer Funktion schnell zu überprüfen, kannst du folgende Schritte befolgen: 1. **Definition verstehen**: Eine Funktion \( f: A \to B \) ist surjektiv, wenn fü... [mehr]
Um die Ableitung der Funktion \( f(x) = \frac{ax}{x + b} \) zu bestimmen, kannst du die Quotientenregel anwenden. Die Quotientenregel besagt, dass die Ableitung einer Funktion der Form \( \frac{u}{v}... [mehr]