Um die Nullstellen der Funktion \( f(x) = (x - 2.5)^2 + 1 \) zu finden, setzt man die Funktion gleich null: \[ (x - 2.5)^2 + 1 = 0 \] Zuerst isolieren wir den quadratischen Term: \[ (x - 2.5)^2 = -... [mehr]
Um den Scheitelpunkt der Parabel \( f(x) = x^2 + 2x + 0,7 \) zu finden, kannst du die Scheitelpunktform der Parabel verwenden. Der Scheitelpunkt einer Parabel in der Form \( f(x) = ax^2 + bx + c \) kann mit der Formel \( x_s = -\frac{b}{2a} \) berechnet werden. Hier sind die Schritte: 1. Identifiziere die Koeffizienten: \( a = 1 \), \( b = 2 \), \( c = 0,7 \). 2. Berechne \( x_s \): \[ x_s = -\frac{2}{2 \cdot 1} = -1 \] 3. Setze \( x_s \) in die Funktion ein, um den y-Wert des Scheitelpunkts zu finden: \[ f(-1) = (-1)^2 + 2 \cdot (-1) + 0,7 = 1 - 2 + 0,7 = -0,3 \] Der Scheitelpunkt der Parabel ist also \( (-1, -0,3) \).
Um die Nullstellen der Funktion \( f(x) = (x - 2.5)^2 + 1 \) zu finden, setzt man die Funktion gleich null: \[ (x - 2.5)^2 + 1 = 0 \] Zuerst isolieren wir den quadratischen Term: \[ (x - 2.5)^2 = -... [mehr]
Um die Nullstellen der Funktion \( h(x) = x^2 - 1,5 \) zu finden, setzt man die Funktion gleich null: \[ x^2 - 1,5 = 0 \] Das kann umgeformt werden zu: \[ x^2 = 1,5 \] Nun zieht man die Quadra... [mehr]
Um die Anzahl der Nullstellen einer quadratischen Funktion der Form \( f(x) = ax^2 + bx + c \) zu bestimmen, kannst du die Diskriminante \( D \) verwenden, die aus den Koeffizienten \( a \), \( b \) u... [mehr]
Um den Graphen der Funktion \( y = 0,5 (x - 1,5)^2 - 2 \) zu zeichnen, folge diesen Schritten: 1. **Bestimme die Scheitelpunktform**: Die Funktion ist bereits in der Scheitelpunktform \( y = a(x - h)... [mehr]
Um die Nullstelle der Funktion \( f(x) = \frac{ab}{(x+b)^2} \) zu berechnen, setzt man die Funktion gleich null: \[ \frac{ab}{(x+b)^2} = 0 \] Eine Bruchgleichung ist genau dann null, wenn der Zä... [mehr]
Die Diskriminante \( D \) einer quadratischen Gleichung der Form \( ax^2 + bx + c = 0 \) wird mit der Formel \( D = b^2 - 4ac \) berechnet. Die Diskriminante gibt Auskunft über die Anzahl und A... [mehr]
Die Diskriminante einer quadratischen Gleichung der Form \(x^2 + ax + b = 0\) wird mit der Formel \(D = a^2 - 4b\) berechnet. Hierbei ist \(D\) die Diskriminante, \(a\) der Koeffizient von \(x\) und \... [mehr]
Um die Surjektivität einer Funktion schnell zu überprüfen, kannst du folgende Schritte befolgen: 1. **Definition verstehen**: Eine Funktion \( f: A \to B \) ist surjektiv, wenn fü... [mehr]
Um die Ableitung der Funktion \( f(x) = \frac{ax}{x + b} \) zu bestimmen, kannst du die Quotientenregel anwenden. Die Quotientenregel besagt, dass die Ableitung einer Funktion der Form \( \frac{u}{v}... [mehr]
Um die Nullstelle der Funktion \( f(x) = (x - 1) - \ln(x) \) zu finden, setzt man die Funktion gleich null: \[ f(x) = 0 \implies (x - 1) - \ln(x) = 0 \] Das vereinfacht sich zu: \[ x - 1 = \ln(x) \... [mehr]