Berechnung rechtwinkliger Dreiecke mit dem Satz des Pythagoras

Antwort

Der Satz des Pythagoras ist eine grundlegende Regel in der Geometrie, die sich auf rechtwinklige Dreiecke bezieht. Er besagt, dass in einem rechtwinkligen Dreieck das Quadrat der Länge der Hypotenuse (c) gleich der Summe der Quadrate der Längen der beiden anderen Seiten (a und b) ist. Die Formel lautet: \[ c^2 = a^2 + b^2 \] Um mit dem Satz des Pythagoras zu arbeiten, kannst du folgende Schritte befolgen: 1. **Identifiziere die Seiten**: Bestimme, welche Seite die Hypotenuse ist (die längste Seite gegenüber dem rechten Winkel) und welche die Katheten (die beiden anderen Seiten). 2. **Setze die Werte ein**: Wenn du die Längen der Katheten (a und b) kennst, kannst du die Hypotenuse (c) berechnen, indem du die Formel umstellst: \[ c = \sqrt{a^2 + b^2} \] Wenn du die Hypotenuse und eine Kathete kennst, kannst du die andere Kathete berechnen: \[ a = \sqrt{c^2 - b^2} \] oder \[ b = \sqrt{c^2 - a^2} \] 3. **Berechne die Werte**: Führe die Berechnungen durch, um die gesuchten Seitenlängen zu finden. Beispiel: Wenn die Katheten a = 3 und b = 4 sind, berechne die Hypotenuse c: \[ c^2 = 3^2 + 4^2 = 9 + 16 = 25 \] \[ c = \sqrt{25} = 5 \] Das rechtwinklige Dreieck hat also die Seitenlängen 3, 4 und 5.

Frage stellen und sofort Antwort erhalten

Verwandte Fragen

Wie viel sind 10 Prozent von 8,83?

10 Prozent von 8,83 sind 0,883.

Wie berechnet man das Integral von 0 bis 0,25 der Funktion 1/(√x * (1-√x)) dx?

Gegeben ist das Integral: \[ \int_{0}^{0{,}25} \frac{dx}{\sqrt{x} \cdot (1 - \sqrt{x})} \] Um das Integral zu lösen, bietet sich die Substitution \( u = \sqrt{x} \) an. **Schritt 1: Substituti... [mehr]

Subtrahiere von der Summe von 26 und 57 die Differenz von 87 und 73. Wie lautet der Rechenausdruck und das Ergebnis?

Der Rechenausdruck lautet: (26 + 57) – (87 – 73) Nun berechnen wir Schritt für Schritt: 1. 26 + 57 = 83 2. 87 – 73 = 14 3. 83 – 14 = 69 Das Ergebnis ist **69**.

Wie sehen die Rechenausdrücke ohne Klammern aus, wenn die Zahlen gleich bleiben? Berechne 17-(25-18), 99+(21-11), 28-(15+9).

Hier sind die Lösungen und die Rechenausdrücke ohne Klammern: 1. **17 - (25 - 18)** - Zuerst mit Klammern: 25 - 18 = 7, dann 17 - 7 = **10** - Ohne Klammern: **17 - 25 - 18** - Rec... [mehr]

Wie viel Prozent sind 2400 von 41575?

Um den Prozentsatz zu berechnen, teilst du 2400 durch 41575 und multiplizierst das Ergebnis mit 100: \( \frac{2400}{41575} \times 100 = 5,77 \% \) (gerundet auf zwei Nachkommastellen). 2400 sind als... [mehr]

Ist ein solches Dreieck geometrisch möglich?

Deine Aussage bezieht sich vermutlich auf eine vorherige Beschreibung oder Aufgabe zu einem Dreieck, bei dem bestimmte Bedingungen nicht erfüllt werden können. Ein Dreieck ist nur dann m&oum... [mehr]

Wie groß ist die Fläche eines rechtwinkligen Dreiecks mit Hypotenuse 10 cm und Höhe auf der Hypotenuse 6 cm?

Die Fläche eines Dreiecks berechnet sich allgemein mit: \[ A = \frac{1}{2} \cdot \text{Grundseite} \cdot \text{zugehörige Höhe} \] In deinem Fall ist die Grundseite die Hypotenuse \(... [mehr]

Wie viel Prozent sind 8912 von 38711 und wie berechnet man das?

Um den Prozentsatz zu berechnen, teilst du die Zahl 8912 durch 38711 und multiplizierst das Ergebnis mit 100: \[ \text{Prozentsatz} = \left(\frac{8912}{38711}\right) \times 100 \] Rechnung: \[ \fra... [mehr]

Was sind Sinussatz und Kosinussatz und wann werden sie angewendet?

Der **Sinussatz** und der **Kosinussatz** sind zwei wichtige mathematische Sätze aus der Trigonometrie, die in beliebigen Dreiecken (also nicht nur in rechtwinkligen Dreiecken) verwendet werden.... [mehr]

Wie viel Prozent Zunahme sind es von 16 auf 19?

Um die prozentuale Zunahme von 16 auf 19 zu berechnen, verwendest du folgende Formel: \[ \text{Prozentuale Zunahme} = \frac{\text{Neuer Wert} - \text{Alter Wert}}{\text{Alter Wert \times 100 \] Setz... [mehr]