Die Aussage „Die Wurzel aus a² ist gleich dem Betrag von a“ lässt sich mit den Eigenschaften der Quadratwurzel und des Betrags erklären – und das hängt vom Zahlen... [mehr]
Das ist nicht korrekt. Der Quotient zweier divergenter Folgen kann sowohl konvergent als auch divergent sein. Ein Beispiel ist die Folge \( a_n = \) (die divergiert) und \( b_n = n \) (die ebenfalls divergiert). Der Quotient \( \frac{a_n}{b_n} = \frac{n}{n} = 1 \) konvergiert. Ein anderes Beispiel ist \( a_n = n \) und \( b_n = (-1)^n n \), wo der Quotient \( \frac{a_n}{b_n} = \frac{n}{(-1)^n n} = (-1)^n \) divergiert. Daher ist die Aussage, dass der Quotient immer konvergent ist, falsch.
Die Aussage „Die Wurzel aus a² ist gleich dem Betrag von a“ lässt sich mit den Eigenschaften der Quadratwurzel und des Betrags erklären – und das hängt vom Zahlen... [mehr]
Die Wurzel aus \( a^2 \) ist der Betrag von \( a \), weil die Quadratwurzel per Definition immer den nicht-negativen Wert liefert. Hier die Erklärung im Detail: - Das Quadrat einer Zahl \( a \)... [mehr]