Der Rechenausdruck lautet: (88 - 65) + (25 + 96) Berechnung: 88 - 65 = 23 25 + 96 = 121 Nun addieren: 23 + 121 = 144 Das Ergebnis ist **144**.
Um das Produkt eines Tripels (a, b, c) zu finden, dessen Summe 243314 beträgt, können wir die Gleichung a + b + c = 243314 verwenden. Ein einfaches Beispiel wäre, wenn wir a, b und c gleich wählen. Das bedeutet: a = b = c = 243314 / 3 = 81104.67 (dies ist jedoch keine ganze Zahl). Um ein ganzzahliges Tripel zu finden, könnte man verschiedene Kombinationen ausprobieren. Ein Beispiel für ein ganzzahliges Tripel könnte sein: a = 81104, b = 81105, c = 81105. In diesem Fall wäre die Summe: 81104 + 81105 + 81105 = 243314. Das Produkt wäre dann: 81104 * 81105 * 81105. Das genaue Produkt kann mit einem Taschenrechner oder einer Software berechnet werden. Das Produkt des Tripels (81104, 81105, 81105) ist: 81104 * 81105 * 81105 = 5.364.000.000.000 (ungefähr). Das ist ein Beispiel, und es gibt viele andere Tripel, die ebenfalls diese Summe ergeben können.
Der Rechenausdruck lautet: (88 - 65) + (25 + 96) Berechnung: 88 - 65 = 23 25 + 96 = 121 Nun addieren: 23 + 121 = 144 Das Ergebnis ist **144**.
Der Rechenausdruck lautet: (26 + 57) – (87 – 73) Nun berechnen wir Schritt für Schritt: 1. 26 + 57 = 83 2. 87 – 73 = 14 3. 83 – 14 = 69 Das Ergebnis ist **69**.
a) Rechenausdruck: 99 – (44 + 33) Berechnung: 99 – (44 + 33) = 99 – 77 = **22** b) Rechenausdruck: 86 + (77 + 33) Berechnung: 86 + (77 + 33) = 86 + 110 = **196**
Die Frage ist, ob man mit der **Summe oder Differenz von Primzahlen** alle Zahlen von **0 bis 255** darstellen kann – und falls ja, mit welchen Primzahlen. ### Analyse - **Primzahlen** sind na... [mehr]
A) 4 mal 70 ergibt 280. Das Produkt heißt 280. B) 90 mal 3 ergibt 270. Das Produkt ist 270. C) Das Produkt ist 420, der erste Faktor ist 6. Der zweite Faktor ist 420 geteilt durch 6 also 70.
Gegeben ist das Produkt 420 und der erste Faktor 6. Gesucht ist der zweite Faktor. Rechnung: \( 6 \times ? = 420 \) Um den zweiten Faktor zu berechnen, teilst du das Produkt durch den ersten Faktor:... [mehr]
Die Summe aus sechs und sechs ist zwölf.
Gegeben ist der Term: \[ n \cdot (n-1) \cdot (n-2) \cdots (n-k+1) \] Du möchtest zeigen, wie man diesen Term als \(\frac{n!}{(n-k)!}\) schreiben kann. Hier sind die Schritte: --- **1. Schreib... [mehr]
Der Ausdruck \( n \cdot (n-1) \cdot (n-2) \cdot \ldots \cdot (n-k+1) \) ist das Produkt der \( k \) aufeinanderfolgenden Zahlen von \( n \) abwärts. Das ist genau die Anzahl der Möglichkeite... [mehr]
Die dreifache Summe aus 3x und 4 wird mathematisch wie folgt ausgedrückt: 3 * (3x + 4) Das bedeutet, du multiplizierst die Summe von 3x und 4 mit 3.