Um die Nullstellen der Funktion \( h(x) = x^2 - 1,5 \) zu finden, setzt man die Funktion gleich null: \[ x^2 - 1,5 = 0 \] Das kann umgeformt werden zu: \[ x^2 = 1,5 \] Nun zieht man die Quadra... [mehr]
Richtig. Eine Nullstelle einer Funktion ist der Punkt, an dem der Funktionswert gleich null ist, was bedeutet, dass der Graph der Funktion die x-Achse schneidet.
Um die Nullstellen der Funktion \( h(x) = x^2 - 1,5 \) zu finden, setzt man die Funktion gleich null: \[ x^2 - 1,5 = 0 \] Das kann umgeformt werden zu: \[ x^2 = 1,5 \] Nun zieht man die Quadra... [mehr]
Um die Nullstelle der Funktion \( f(x) = \frac{ab}{(x+b)^2} \) zu berechnen, setzt man die Funktion gleich null: \[ \frac{ab}{(x+b)^2} = 0 \] Eine Bruchgleichung ist genau dann null, wenn der Zä... [mehr]
Um die Nullstelle der Funktion \( f(x) = (x - 1) - \ln(x) \) zu finden, setzt man die Funktion gleich null: \[ f(x) = 0 \implies (x - 1) - \ln(x) = 0 \] Das vereinfacht sich zu: \[ x - 1 = \ln(x) \... [mehr]
Um die Nullstelle der Funktion \( f(x) = 4 - 7x \) zu bestimmen, setzt man die Funktion gleich null: \[ 4 - 7x = 0 \] Nun löst man die Gleichung nach \( x \) auf: 1. Subtrahiere 4 von beiden S... [mehr]
Um die Nullstelle der Funktion \( f(x) = 2x - 4 \) zu bestimmen, setzt man die Funktion gleich null: \[ 2x - 4 = 0 \] Nun löst man die Gleichung nach \( x \) auf: 1. Addiere zu beiden Seiten:... [mehr]