Um das Additions (auch Gleichsetzungs- oder Eliminationsverfahren genannt) anzuwenden, werden die beiden Gleichungen so addiert, dass eine Variable wegfällt. Hier sind die beiden Gleichungen: (I... [mehr]
Um die Lösung für \( x \) zu finden, wenn das Mobile wie eine Waage funktioniert, müssen wir die Gleichgewichtszustände betrachten. Ein Mobile ist im Gleichgewicht, wenn die Drehmomente auf beiden Seiten gleich sind. Angenommen, wir haben ein Mobile mit zwei Seiten, wobei auf der linken Seite ein Gewicht \( m_1 \) in einem Abstand \( d_1 \) von der Aufhängung und auf der rechten Seite ein Gewicht \( m_2 \) in einem Abstand \( d_2 \) hängt. Die Bedingung für das Gleichgewicht lautet: \[ m_1 \cdot d_1 = m_2 \cdot d_2 \] Wenn eines der Gewichte oder Abstände unbekannt ist, kannst du die Gleichung umstellen, um \( x \) zu isolieren. Zum Beispiel, wenn \( m_1 \) und \( d_1 \) bekannt sind und du \( m_2 \) und \( d_2 \) suchst, kannst du die Gleichung so umstellen: \[ m_2 = \frac{m_1 \cdot d_1}{d_2} \] oder, wenn du \( d_1 \) suchst: \[ d_1 = \frac{m_2 \cdot d_2}{m_1} \] Um die genaue Lösung für \( x \) zu finden, benötige ich die spezifischen Werte für die Gewichte und Abstände.
Um das Additions (auch Gleichsetzungs- oder Eliminationsverfahren genannt) anzuwenden, werden die beiden Gleichungen so addiert, dass eine Variable wegfällt. Hier sind die beiden Gleichungen: (I... [mehr]
Um die Gleichung \(7 + 3x = 8 + (8x - 6)\) zu lösen, folge diesen Schritten: 1. Vereinfache die rechte Seite der Gleichung: \[ 7 + 3x = 8 + 8x - 6 \] \[ 7 + 3x = 2 + 8x \] 2.... [mehr]
Damit die Gleichung \( ax^2 + bx + c = 0 \) genau eine reelle Lösung hat, muss die Diskriminante \( D \) gleich null sein. Die Diskriminante wird durch die Formel \( D = b^2 - 4ac \) berechnet.... [mehr]
Um die Gleichung \(4(x + 1) - 2x = 2(x + 2)\) zu lösen, folge diesen Schritten: 1. Verteile die Terme auf beiden Seiten der Gleichung: \[ 4x + 4 - 2x = 2x + 4 \] 2. Fasse die Terme auf... [mehr]
Um die Gleichung \( 18 + 11x - 7 + 3x = 31 \) zu lösen, folge diesen Schritten: 1. Fasse die konstanten Terme auf der linken Seite zusammen: \[ 18 - 7 = 11 \] Somit wird die Gleichun... [mehr]
Um die Gleichung \( 17x + 23 - 12x - 15 = 48 \) zu lösen, folge diesen Schritten: 1. Fasse die \( x \)-Terme und die konstanten Terme zusammen: \[ (17x - 12x) + (23 - 15) = 48 \] Das... [mehr]
Um die Gleichung \(7x + 19 - 4x + 2 = 70\) zu lösen, folge diesen Schritten: 1. Fasse die \(x\)-Terme zusammen: \[ (7x - 4x) + (19 + 2) = 70 \] Das vereinfacht sich zu: \[ 3x +... [mehr]
Um die Gleichung \(3x + 8 + 6x - 3 = 32\) zu lösen, folge diesen Schritten: 1. Fasse die \(x\)-Terme und die konstanten Terme zusammen: \[ (3x + 6x) + (8 - 3) = 32 \] Das vereinfacht... [mehr]
Um die Gleichungen zu finden, die die gleiche Lösung haben, müssen wir jede Gleichung lösen und die Lösungen vergleichen. 1. **x + 4 = 7** - Lösung: x = 3 2. **2x = 4**... [mehr]