Nein, die Riemannsche Vermutung ist bislang nicht bewiesen. Sie gehört zu den berühmtesten ungelösten Problemen der Mathematik. Die Vermutung wurde 1859 von Bernhard Riemann formuliert... [mehr]
Das ist ein Beispiel für das Kommutativgesetz der Addition. Das Kommutativgesetz besagt, dass die Reihenfolge, in der zwei Zahlen addiert werden, das Ergebnis nicht beeinflusst. In der Gleichung \(2 \cdot x + 7 = 7 + 2 \cdot x\) wird gezeigt, dass die Addition von \(2 \cdot x\) und 7 unabhängig von der Reihenfolge das gleiche Ergebnis liefert.
Nein, die Riemannsche Vermutung ist bislang nicht bewiesen. Sie gehört zu den berühmtesten ungelösten Problemen der Mathematik. Die Vermutung wurde 1859 von Bernhard Riemann formuliert... [mehr]
Um 19 Prozent zu 2187 zu addieren, berechnest du zunächst 19 % von 2187: 2187 × 0,19 = 415,53 Dann addierst du diesen Wert zu 2187: 2187 + 415,53 = 2602,53 Das Ergebnis ist **2602,53**.
Um Gleichungen zu lösen, musst du die Gleichung so umformen, dass die Unbekannte isoliert auf einer Seite steht. Hier sind die grundlegenden Schritte: 1. **Gleichung aufstellen**: Schreibe die G... [mehr]
Um die Gleichung \(7 + 3x = 8 + (8x - 6)\) zu lösen, folge diesen Schritten: 1. Vereinfache die rechte Seite der Gleichung: \[ 7 + 3x = 8 + 8x - 6 \] \[ 7 + 3x = 2 + 8x \] 2.... [mehr]
1/4 + 2/4 ergibt 3/4.
Um die Brüche 5/18 und 1/18 zu addieren, addierst du die Zähler und behältst den Nenner bei: 5/18 + 1/18 = (5 + 1) / 18 = 6/18. kannst du den Bruch 6/18 kürzen. Der grö&szl... [mehr]
Um die Rechnung \( \frac{5}{7} + 6 + 7 \) durchzuführen, addiere zuerst die ganzen Zahlen: \( 6 + 7 = 13 \). Dann addiere \( \frac{5}{7} \) zu \( 13 \): \( 13 + \frac{5}{7} = \frac{13 \cdot 7}... [mehr]
Hier sind zwei Aufgaben zum Thema negative und positive Zahlen multiplizieren und dividieren: 1. Multipliziere: \(-7 \times 5\) 2. Dividiere: \(-24 \div 6\) Lösungen: 1. \(-7 \times 5 = -35\)... [mehr]
Um die Nullstelle der Funktion \( f(x) = \frac{ab}{(x+b)^2} \) zu berechnen, setzt man die Funktion gleich null: \[ \frac{ab}{(x+b)^2} = 0 \] Eine Bruchgleichung ist genau dann null, wenn der Zä... [mehr]
Der Überschlag von 74456 bezieht sich auf die Schätzung oder Rundung der Zahl. Wenn du den Überschlag auf die nächste Zehnerstelle machen möchtest, wäre das 74460. Wenn d... [mehr]