Der Überschlag von 74456 bezieht sich auf die Schätzung oder Rundung der Zahl. Wenn du den Überschlag auf die nächste Zehnerstelle machen möchtest, wäre das 74460. Wenn d... [mehr]
Das kleinste gemeinsame Vielfache (kgV) zweier oder mehrerer Zahlen ist die kleinste positive ganze Zahl, die ein Vielfaches jeder dieser Zahlen ist. Um das kgV zu finden, kann man die Primfaktorzerlegung der Zahlen verwenden oder die Zahlen auflisten und das kleinste gemeinsame Vielfache identifizieren. Ein Beispiel: Für die Zahlen 4 und 5 sind die Vielfachen von 4 (4, 8, 12, 16, 20, ...) und die Vielfachen von 5 (5, 10, 15, 20, ...). Das kleinste gemeinsame Vielfache ist 20. Eine andere Methode ist die Verwendung der Formel: \[ \text{kgV}(a, b) = \frac{|a \cdot b|}{\text{ggT}(a, b)} \] wobei ggT der größte gemeinsame Teiler ist.
Der Überschlag von 74456 bezieht sich auf die Schätzung oder Rundung der Zahl. Wenn du den Überschlag auf die nächste Zehnerstelle machen möchtest, wäre das 74460. Wenn d... [mehr]
-75 : -5 ergibt 15.
Um den gemeinsamen Teiler der Zahlen 42, 56, 35 und 91 zu finden, bestimmen wir zunächst die Primfaktorzerlegungen der einzelnen Zahlen: - 42 = 2 × 3 × 7 - 56 = 2³ × 7 - 3... [mehr]
Um Gleichungen zu lösen, musst du die Gleichung so umformen, dass die Unbekannte isoliert auf einer Seite steht. Hier sind die grundlegenden Schritte: 1. **Gleichung aufstellen**: Schreibe die G... [mehr]
Der größte gemeinsame Teiler (ggT) von 445 und 1000 ist 5.
27.000 geteilt durch 1.100 ergibt 24,545454545... oder gerundet 24,55.
Um die Gleichung \(7 + 3x = 8 + (8x - 6)\) zu lösen, folge diesen Schritten: 1. Vereinfache die rechte Seite der Gleichung: \[ 7 + 3x = 8 + 8x - 6 \] \[ 7 + 3x = 2 + 8x \] 2.... [mehr]
Um die Rechnung \( \frac{5}{7} + 6 + 7 \) durchzuführen, addiere zuerst die ganzen Zahlen: \( 6 + 7 = 13 \). Dann addiere \( \frac{5}{7} \) zu \( 13 \): \( 13 + \frac{5}{7} = \frac{13 \cdot 7}... [mehr]
Der Überschlag von 13489 bezieht sich in der Regel auf eine grobe Schätzung oder Rundung der Zahl. Wenn du 13489 auf die nächste Tausend runden möchtest, wäre der Übersch... [mehr]
Hier sind zwei Aufgaben zum Thema negative und positive Zahlen multiplizieren und dividieren: 1. Multipliziere: \(-7 \times 5\) 2. Dividiere: \(-24 \div 6\) Lösungen: 1. \(-7 \times 5 = -35\)... [mehr]