Um die zurückgelegte Strecke bei einer Geschwindigkeit von 208 km/h für 0,8 Sekunden zu berechnen, kannst du die Formel für die Strecke verwenden: \[ \text{Strecke} = \text{Geschwindig... [mehr]
In einem Sehnenviereck ist die Summe der Innenwinkel immer 360 Grad. Die Innenwinkel α und β sind gegeben, also: α = 65 Grad β = 72 Grad Um die anderen beiden Innenwinkel γ und δ zu berechnen, verwenden wir die Formel: γ + δ = 360 Grad - (α + β) Zuerst berechnen wir die Summe von α und β: α + β = 65 Grad + 72 Grad = 137 Grad Nun setzen wir das in die Gleichung ein: γ + δ = 360 Grad - 137 Grad = 223 Grad Die Innenwinkel γ und δ können jedoch nicht eindeutig bestimmt werden, da es unendlich viele Kombinationen gibt, die diese Bedingung erfüllen. Sie müssen zusätzliche Informationen haben, um γ und δ zu berechnen. Falls du spezifische Werte oder Bedingungen für γ und δ hast, teile diese bitte mit.
Um die zurückgelegte Strecke bei einer Geschwindigkeit von 208 km/h für 0,8 Sekunden zu berechnen, kannst du die Formel für die Strecke verwenden: \[ \text{Strecke} = \text{Geschwindig... [mehr]
Die 4. Wurzel aus \( \frac{1}{16} \) ist \( \frac{1}{2} \). Dies lässt sich so erklären: \[ \frac{1}{16} = \left( \frac{1}{2} \right)^4 \] Daher ist die 4. Wurzel von \( \frac{1}{16} \) g... [mehr]
Um die rationalen Zahlen \((-6,6)\) und \((+1,2)\) zu subtrahieren subtrahierst du die entsprechenden Werte: \[ (-6,6) - (+1,2) = (-6 - 1, 6 - 2) = (-7, 4) \] Das Ergebnis ist \((-7, 4)\).
Die Berechnung der rationalen Zahlen \((-40) - (+12)\) erfolgt wie folgt: \[ -40 - 12 = -40 + (-12) = -52 \] Das Ergebnis ist \(-52\).
Um die Fläche eines Rechtecks zu berechnen, multiplizierst du die Länge (l) mit der Breite (b). Die Formel lautet: \[ \text{Fläche} = l \times b \] Wenn du den Umfang berechnen mö... [mehr]
Um die Probe für \( a = 2 \) durchzuführen, setzen wir \( a \) in den Ausdruck \( (3a^3 + 4a^2)(-2a - a^5) \) ein. 1. Berechne zuerst \( 3a^3 + 4a^2 \): \[ 3(2^3) + 4(2^2) = 3(8) + 4(... [mehr]
3(2)^2 = 3 * 4 = 12.
Um den Radius eines Kreises zu berechnen, wenn du den Flächeninhalt (A) kennst, kannst du die Formel für den Flächeninhalt eines Kreises verwenden: \[ A = \pi r^2 \] Dabei ist \( r \)... [mehr]
Um die Nullstellen der Funktion \( f(x) = x^3 + 4x^2 + 3x \) zu berechnen, setzt man die Funktion gleich null: \[ x^3 + 4x^2 + 3x = 0 \] Zuerst kann man \( x \) ausklammern: \[ x(x^2 + 4x + 3) = 0... [mehr]
Um den Prozentsatz von 20 kg im Verhältnis zu 60 kg zu berechnen, verwendest du die Formel: \[ \text{Prozentsatz} = \left( \frac{\text{Teil}}{\text{Ganzes}} \right) \times 100 \] In diesem Fall... [mehr]