Um 5250 durch 3500 zu teilen, kannst du den Bruch vereinfachen. 1. Schreibe den Bruch: \( \frac{5250}{3500} \). 2. Teile sowohl den Zähler als auch den Nenner durch 3500: \( \frac{5250 \di... [mehr]
Um die Hypotenuse eines rechtwinkligen Dreiecks zu berechnen, kannst du den Satz des Pythagoras verwenden. Dieser besagt, dass die Summe der Quadrate der Katheten gleich dem Quadrat der Hypotenuse ist. Die Formel lautet: \[ c = \sqrt{a^2 + b^2} \] Dabei ist \( c \) die Hypotenuse, und \( a \) und \( b \) sind die Katheten. In deinem Fall sind beide Katheten 1,5. Setze die Werte in die Formel ein: \[ c = \sqrt{1.5^2 + 1.5^2} \] \[ c = \sqrt{2.25 + 2.25} \] \[ c = \sqrt{4.5} \] \[ c \approx 2.12 \] Die Hypotenuse beträgt also ungefähr 2,12.
Um 5250 durch 3500 zu teilen, kannst du den Bruch vereinfachen. 1. Schreibe den Bruch: \( \frac{5250}{3500} \). 2. Teile sowohl den Zähler als auch den Nenner durch 3500: \( \frac{5250 \di... [mehr]
3/6 kann vereinfacht werden zu 1/2.
Beim Ausklammern handelt es sich um eine algebraische, um einen gemeinsamen Faktor aus einem Ausdruck zu entfernen. Hier sind die Schritte, um Ausklammern durch: 1. **ifiziere den gemeinsamen Faktor*... [mehr]
Um die Gleichung zu lösen, schauen wir uns den Ausdruck an: \(-5 \times \frac{1}{2} = \frac{1}{8}\) Lücke. Zuerst berechnen wir \(-5 \times \frac{1}{2}\): \[ -5 \times \frac{1}{2} =\frac{5... [mehr]
In einem rechtwinkligen Dreieck ist der Sinus eines Winkels (in diesem Fall Alpha) definiert als das Verhältnis der Länge der Gegenkathete zur Länge der Hypotenuse. Die Formel lautet:... [mehr]