Zwischen dem Parabelbogen y = (1 - x^2)/4 und der x-Achse soll ein möglichst großes Rechteck eingepasst werden. Wie groß ist es?

Antwort

Um das größte Rechteck zwischen dem Parabelbogen \( y = \frac{1 - x^2}{4} \) und der x-Achse zu finden, muss die Fläche des Rechtecks maximiert werden. Das Rechteck hat seine Basis auf der x-Achse und seine obere Seite auf der Parabel. 1. **Bestimme die Funktion für die Fläche des Rechtecks:** Die Höhe des Rechtecks ist \( y = \frac{1 - x^2}{4} \). Da das Rechteck symmetrisch zur y-Achse ist, reicht es, die Hälfte der Basis zu betrachten, also von \(-a\) bis \(a\). Die Breite des Rechtecks ist \(2a\) (von \(-a\) bis \(a\)). Die Fläche \(A\) des Rechtecks ist dann: \[ A = \text{Breite} \times \text{Höhe} = 2a \times \frac{1 - a^2}{4} \] 2. **Vereinfache die Flächenfunktion:** \[ A(a) = 2a \times \frac{1 - a^2}{4} = \frac{2a(1 - a^2)}{4} = \frac{2a - 2a^3}{4} = \frac{a - a^3}{2} \] 3. **Maximiere die Flächenfunktion:** Um die maximale Fläche zu finden, muss die Ableitung der Flächenfunktion \(A(a)\) gebildet und gleich null gesetzt werden: \[ A(a) = \frac{a - a^3}{2} \] Die Ableitung von \(A(a)\) ist: \[ A'(a) = \frac{d}{da} \left( \frac{a - a^3}{2} \right) = \frac{1 - 3a^2}{2} \] Setze die Ableitung gleich null, um die kritischen Punkte zu finden: \[ \frac{1 - 3a^2}{2} = 0 \] \[ 1 - 3a^2 = 0 \] \[ 3a^2 = 1 \] \[ a^2 = \frac{1}{3} \] \[ a = \pm \frac{1}{\sqrt{3}} \] Da \(a\) die halbe Breite des Rechtecks ist, betrachten wir nur den positiven Wert: \[ a = \frac{1}{\sqrt{3}} \] 4. **Berechne die maximale Fläche:** Setze \(a = \frac{1}{\sqrt{3}}\) in die Flächenfunktion ein: \[ A\left( \frac{1}{\sqrt{3}} \right) = \frac{\frac{1}{\sqrt{3}} - \left( \frac{1}{\sqrt{3}} \right)^3}{2} \] \[ A\left( \frac{1}{\sqrt{3}} \right) = \frac{\frac{1}{\sqrt{3}} - \frac{1}{3\sqrt{3}}}{2} \] \[ A\left( \frac{1}{\sqrt{3}} \right) = \frac{\frac{1}{\sqrt{3}} \left( 1 - \frac{1}{3} \right)}{2} \] \[ A\left( \frac{1}{\sqrt{3}} \right) = \frac{\frac{1}{\sqrt{3}} \cdot \frac{2}{3}}{2} \] \[ A\left( \frac{1}{\sqrt{3}} \right) = \frac{\frac{2}{3\sqrt{3}}}{2} \] \[ A\left( \frac{1}{\sqrt{3}} \right) = \frac{2}{6\sqrt{3}} \] \[ A\left( \frac{1}{\sqrt{3}} \right) = \frac{1}{3\sqrt{3}} \] \[ A\left( \frac{1}{\sqrt{3}} \right) = \frac{\sqrt{3}}{9} \] Die maximale Fläche des Rechtecks, das zwischen dem Parabelbogen \( y

Frage stellen und sofort Antwort erhalten

Verwandte Fragen

Welche Länge hat ein Rechteck bei zentrischer Streckung mit k=3,5, Flächeninhalt 400 dm² und Umfang 82 dm?

Bei einer zentrischen Streckung wird die Fläche und der Umfang eines geometrischen Körpers durch den Streckfaktor k beeinflusst. 1. **Flächeninhalt nach der Streckung**: Der neue F... [mehr]

Wie setzt man den Punkt P(1/3) in die Gleichung y = ax²?

Um den Punkt \( P(1, \frac{1}{3}) \) in die Gleichung \( y = ax^2 \) einzusetzen, musst du die Koordinaten des Punktes in die Gleichung einfügen. Das bedeutet, dass du \( x = 1 \) und \( y = \fra... [mehr]

Rechteck berechnen

Um die Fläche eines Rechtecks zu berechnen, multiplizierst du die Länge (l) mit der Breite (b). Die Formel lautet: \[ \text{Fläche} = l \times b \] Wenn du den Umfang berechnen mö... [mehr]

Wie erkennt man den Funktionsterm einer Parabel am Graphen?

Um den Funktionsterm einer Parabel anhand ihres Graphen zu erkennen, kannst du folgende Schritte befolgen: 1. **Scheitelpunkt bestimmen**: Finde den Scheitelpunkt der Parabel. Dieser Punkt ist entwed... [mehr]

Wie sieht der Graph der Stammfunktion einer nach oben geöffneten Parabel aus?

Der Graph der Stammfunktion einer nach oben hin geöffneten Parabel hat die Form einer kubischen Funktion. Eine nach oben hin geöffnete Parabel kann allgemein durch die Funktion \( f(x) = ax^... [mehr]

Scheitelpunktform berechnen?

Die Scheitelpunktform einer Parabel hat die allgemeine Form \( y = a(x - h)^2 + k \), wobei \((h, k)\) der Scheitelpunkt der Parabel ist. Um die Scheitelpunktform aus der allgemeinen Form \( y = ax^2... [mehr]