Um die Nullstellen der Funktion \( f(x) = (x - 2.5)^2 + 1 \) zu finden, setzt man die Funktion gleich null: \[ (x - 2.5)^2 + 1 = 0 \] Zuerst isolieren wir den quadratischen Term: \[ (x - 2.5)^2 = -... [mehr]
Eine quadratische Funktion kann in der Form \( f(x) = a(x - x_1)(x - x_2) \) geschrieben werden, wobei \( x_1 \) und \( x_2 \) die Nullstellen sind. In diesem Fall sind die Nullstellen \( x_1 = 1 \) und \( x_2 = -2 \). Setze diese Werte in die Gleichung ein: \[ f(x) = a(x - 1)(x + 2) \] Da die Parabel die y-Achse bei \( y_0 = 2 \) schneidet, bedeutet das, dass \( f(0) = 2 \) gilt. Setze \( x = 0 \) in die Gleichung ein und löse nach \( a \) auf: \[ f(0) = a(0 - 1)(0 + 2) = 2 \] \[ a(-1)(2) = 2 \] \[ -2 = 2 \] \[ a = -1 \] Setze \( a \) in die ursprüngliche Gleichung ein: \[ f(x) = -1(x - 1)(x + 2) \] Multipliziere die Terme aus: \[ f(x) = -1(x^2 + 2x - x - 2) \] \[ f(x) = -1(x^2 + x - 2) \] \[ f(x) = -x^2 - x + 2 \] Die Gleichung der Parabel lautet: \[ f(x) = -x^2 - x + 2 \]
Um die Nullstellen der Funktion \( f(x) = (x - 2.5)^2 + 1 \) zu finden, setzt man die Funktion gleich null: \[ (x - 2.5)^2 + 1 = 0 \] Zuerst isolieren wir den quadratischen Term: \[ (x - 2.5)^2 = -... [mehr]
Um die Anzahl der Nullstellen einer quadratischen Funktion der Form \( f(x) = ax^2 + bx + c \) zu bestimmen, kannst du die Diskriminante \( D \) verwenden, die aus den Koeffizienten \( a \), \( b \) u... [mehr]
Die zweite Wurzel von \( x \) ist gleich \( \sqrt{x} \) oder \( x^{1/2} \). Die erste Ableitung davon ist: \[ \frac{d}{dx} \left( x^{1/2} \right) = \frac{1}{2} x^{-1/2} = \frac{1}{2\sqrt{x}} \] **A... [mehr]
Eine Funktion \( f(x) \) wird längs der x-Achse gestaucht oder gestreckt, indem du das Argument der Funktion mit einem Faktor \( a \) multiplizierst: - **Streckung entlang der x-Achse:** \(... [mehr]
Die Riemannsche Vermutung ist eines der berühmtesten und wichtigsten ungelösten Probleme der Mathematik. Sie wurde 1859 von dem deutschen Mathematiker Bernhard Riemann formuliert und besch&a... [mehr]
Um die Nullstellen der Funktion \( h(x) = x^2 - 1,5 \) zu finden, setzt man die Funktion gleich null: \[ x^2 - 1,5 = 0 \] Das kann umgeformt werden zu: \[ x^2 = 1,5 \] Nun zieht man die Quadra... [mehr]
Um den Graphen der Funktion \( y = 0,5 (x - 1,5)^2 - 2 \) zu zeichnen, folge diesen Schritten: 1. **Bestimme die Scheitelpunktform**: Die Funktion ist bereits in der Scheitelpunktform \( y = a(x - h)... [mehr]
Um die Nullstelle der Funktion \( f(x) = \frac{ab}{(x+b)^2} \) zu berechnen, setzt man die Funktion gleich null: \[ \frac{ab}{(x+b)^2} = 0 \] Eine Bruchgleichung ist genau dann null, wenn der Zä... [mehr]
Die Diskriminante \( D \) einer quadratischen Gleichung der Form \( ax^2 + bx + c = 0 \) wird mit der Formel \( D = b^2 - 4ac \) berechnet. Die Diskriminante gibt Auskunft über die Anzahl und A... [mehr]
Die Diskriminante einer quadratischen Gleichung der Form \(x^2 + ax + b = 0\) wird mit der Formel \(D = a^2 - 4b\) berechnet. Hierbei ist \(D\) die Diskriminante, \(a\) der Koeffizient von \(x\) und \... [mehr]