Um die Nullstellen der Funktion \( f(x) = (x - 2.5)^2 + 1 \) zu finden, setzt man die Funktion gleich null: \[ (x - 2.5)^2 + 1 = 0 \] Zuerst isolieren wir den quadratischen Term: \[ (x - 2.5)^2 = -... [mehr]
Ja, es gibt ganzrationale Funktionen dritten Grades (kubische Funktionen), die keine Nullstellen haben. Ein Beispiel dafür ist eine Funktion der Form \( f(x) = ax^3 + bx^ + cx + d \), bei der der Graph der Funktion keine x-Achse schneidet. Dies kann passieren, wenn die Diskriminante der kubischen Gleichung negativ ist und die Funktion keine reellen Wurzeln hat. Ein konkretes Beispiel wäre \( f(x) = x^3 + x^2 + x + 1 \).
Um die Nullstellen der Funktion \( f(x) = (x - 2.5)^2 + 1 \) zu finden, setzt man die Funktion gleich null: \[ (x - 2.5)^2 + 1 = 0 \] Zuerst isolieren wir den quadratischen Term: \[ (x - 2.5)^2 = -... [mehr]
Um die Anzahl der Nullstellen einer quadratischen Funktion der Form \( f(x) = ax^2 + bx + c \) zu bestimmen, kannst du die Diskriminante \( D \) verwenden, die aus den Koeffizienten \( a \), \( b \) u... [mehr]
Um die Nullstellen der Funktion \( f(x) = x^3 + 4x^2 + 3x \) zu berechnen, setzt man die Funktion gleich null: \[ x^3 + 4x^2 + 3x = 0 \] Zuerst kann man \( x \) ausklammern: \[ x(x^2 + 4x + 3) = 0... [mehr]
Die Aussage ist falsch. Eine Gleichung vierten Grades kann bis zu vier Lösungen (Wurzeln) haben, und es ist möglich, dass sie die Lösungen -5, 0 und 5 hat. Um eine solche Gleichung zu k... [mehr]
Die Aussage ist korrekt. Jede Gleichung dritten Grades (auch kubische Gleichung genannt) hat mindestens eine Lösung im Bereich der komplexen Zahlen. Dies folgt aus dem Fundamentalsatz der Algebra... [mehr]