Gibt es ganzrationale Funktionen 3. Grades ohne Nullstellen?

Antwort

Ja, es gibt ganzrationale Funktionen dritten Grades (kubische Funktionen), die keine Nullstellen haben. Ein Beispiel dafür ist eine Funktion der Form \( f(x) = ax^3 + bx^ + cx + d \), bei der der Graph der Funktion keine x-Achse schneidet. Dies kann passieren, wenn die Diskriminante der kubischen Gleichung negativ ist und die Funktion keine reellen Wurzeln hat. Ein konkretes Beispiel wäre \( f(x) = x^3 + x^2 + x + 1 \).

KI fragen