Um die Nullstellen der Funktion \( f(x) = x^3 + 4x^2 + 3x \) zu berechnen, setzt man die Funktion gleich null: \[ x^3 + 4x^2 + 3x = 0 \] Zuerst kann man \( x \) ausklammern: \[ x(x^2 + 4x + 3) = 0... [mehr]
Diese Aussage ist nicht korrekt. Eine ganzrationale Funktion dritten Grades (auch kubische Funktion genannt) hat nicht zwingend drei Nullstellen. Die Anzahl der Nullstellen hängt von der Beschaffenheit der Funktion und den komplexen Zahlen ab. Hier sind die möglichen Szenarien: 1. **Drei reelle Nullstellen**: Dies tritt auf, wenn die Funktion drei verschiedene reelle Nullstellen hat oder eine reelle Nullstelle mit Vielfachheit drei. 2. **Eine reelle und zwei komplexe Nullstellen**: Dies tritt auf, wenn die Funktion eine reelle Nullstelle und ein Paar konjugiert komplexer Nullstellen hat. 3. **Eine reelle Nullstelle mit Vielfachheit drei**: Dies tritt auf, wenn die Funktion eine dreifache reelle Nullstelle hat. Die allgemeine Form einer kubischen Funktion ist \( f(x) = ax^3 + bx^2 + cx + d \), wobei \( a, b, c \) und \( d \) reelle Zahlen sind und \( a \neq 0 \). Die Nullstellen dieser Funktion sind die Lösungen der Gleichung \( ax^3 + bx^2 + cx + d = 0 \). Diese Gleichung kann bis zu drei Lösungen haben, die reell oder komplex sein können. Zusammengefasst: Eine kubische Funktion hat immer genau drei Nullstellen, wenn man die komplexen Nullstellen mitzählt, aber nicht notwendigerweise drei reelle Nullstellen.
Um die Nullstellen der Funktion \( f(x) = x^3 + 4x^2 + 3x \) zu berechnen, setzt man die Funktion gleich null: \[ x^3 + 4x^2 + 3x = 0 \] Zuerst kann man \( x \) ausklammern: \[ x(x^2 + 4x + 3) = 0... [mehr]
Um die Nullstellen der Funktion \( f(x) = (x - 2.5)^2 + 1 \) zu finden, setzt man die Funktion gleich null: \[ (x - 2.5)^2 + 1 = 0 \] Zuerst isolieren wir den quadratischen Term: \[ (x - 2.5)^2 = -... [mehr]
Der Satz von Vieta beschreibt die Beziehungen zwischen den Koeffizienten eines Polynoms und den Wurzeln dieses Polynoms. Für ein quadratisches Polynom der Form \( ax^2 + bx + c = 0 \) mit den Wur... [mehr]
Der Ausdruck \((A^3 - B^3)(A^3 + B^3)\) kann mithilfe der Identität für die Differenz und die Summe von Kuben vereinfacht werden. Zuerst erkennen wir, dass: \[ A^3 - B^3 = (A - B)(A^2 + A... [mehr]
Um die Anzahl der Nullstellen einer quadratischen Funktion der Form \( f(x) = ax^2 + bx + c \) zu bestimmen, kannst du die Diskriminante \( D \) verwenden, die aus den Koeffizienten \( a \), \( b \) u... [mehr]
Um den Ausdruck \((x + 6)(x + 6)\) zu vereinfachen, kannst du die binomische Formel verwenden. Dies ist ein Quadrat eines Binoms, das wie folgt aussieht: \[ (a + b)^2 = a^2 + 2ab + b^2 \] In deinem... [mehr]
Um den Ausdruck \( x^2 - 6 - (x + 2)(x - 2) + 2x \) zu vereinfachen, folge diesen Schritten: 1. Berechne das Produkt \( (x + 2)(x - 2) \): \[ (x + 2)(x - 2 = x^2 4 ] 2. Setze das Ergebnis in... [mehr]
Die Aussage ist falsch. Eine Gleichung vierten Grades kann bis zu vier Lösungen (Wurzeln) haben, und es ist möglich, dass sie die Lösungen -5, 0 und 5 hat. Um eine solche Gleichung zu k... [mehr]
Die Aussage ist korrekt. Jede Gleichung dritten Grades (auch kubische Gleichung genannt) hat mindestens eine Lösung im Bereich der komplexen Zahlen. Dies folgt aus dem Fundamentalsatz der Algebra... [mehr]