Ein Koordinatensystem ist ein System zur eindeutigen Bestimmung von Punkten im Raum durch Zahlenpaare oder -tripel. Die häufigste Einteilung erfolgt in zwei Dimensionen (2D) und drei Dimensionen... [mehr]
Um die Funktionsgleichung in der Form \( y = ax^2 + bx + c \) zu bestimmen, benötigst du mehr Informationen, wie zum Beispiel weitere Punkte oder Bedingungen, die die Parabel definieren. Der Punkt \( S(-3|-2) \) gibt uns jedoch einen Punkt auf der Parabel, was bedeutet, dass er die Gleichung erfüllt. Setze den Punkt in die allgemeine Form ein: \[ -2 = a(-3)^2 + b(-3) + c \] Das vereinfacht sich zu: \[ -2 = 9a - 3b + c \] Um die Werte für \( a \), \( b \) und \( c \) zu bestimmen, benötigst du mindestens zwei weitere Punkte oder zusätzliche Informationen über die Parabel (z.B. Scheitelpunkt, Öffnungsrichtung, etc.). Wenn du diese Informationen bereitstellen kannst, kann die Gleichung weiter eingegrenzt werden.
Ein Koordinatensystem ist ein System zur eindeutigen Bestimmung von Punkten im Raum durch Zahlenpaare oder -tripel. Die häufigste Einteilung erfolgt in zwei Dimensionen (2D) und drei Dimensionen... [mehr]
Um den Punkt \( P(1, \frac{1}{3}) \) in die Gleichung \( y = ax^2 \) einzusetzen, musst du die Koordinaten des Punktes in die Gleichung einfügen. Das bedeutet, dass du \( x = 1 \) und \( y = \fra... [mehr]
Um den Funktionsterm einer Parabel anhand ihres Graphen zu erkennen, kannst du folgende Schritte befolgen: 1. **Scheitelpunkt bestimmen**: Finde den Scheitelpunkt der Parabel. Dieser Punkt ist entwed... [mehr]
Der Graph der Stammfunktion einer nach oben hin geöffneten Parabel hat die Form einer kubischen Funktion. Eine nach oben hin geöffnete Parabel kann allgemein durch die Funktion \( f(x) = ax^... [mehr]
Die Scheitelpunktform einer Parabel hat die allgemeine Form \( y = a(x - h)^2 + k \), wobei \((h, k)\) der Scheitelpunkt der Parabel ist. Um die Scheitelpunktform aus der allgemeinen Form \( y = ax^2... [mehr]
Um die gesamte Funktionsgleichung ohne Zeichnung herzuleiten, kannst du folgende Schritte befolgen: 1. **Definition der Funktion**: Beginne mit der Definition der Funktion, die du untersuchen mö... [mehr]