Wie erkennt man an der Funktionsgleichung, ob etwas achsensymmetrisch, punktsymmetrisch, eine Parabel oder eine Hyperbel ist?

Antwort

Um zu erkennen, ob eine Funktion achsensymmetrisch oder punktsymmetrisch ist, sowie um zu bestimmen, ob es sich um eine Parabel oder Hyperbel handelt, kannst du folgende Kriterien anwenden: 1. **Achsensymmetrie**: Eine Funktion \( f(x) \) ist achsensymmetrisch zur y-Achse, wenn gilt: \( f(-x) = f(x) \) für alle \( x \) im Definitionsbereich. Dies ist typischerweise bei geraden Funktionen der Fall, wie z.B. \( f(x) = x^2 \). 2. **Punktsymmetrie**: Eine Funktion ist punktsymmetrisch zum Ursprung, wenn gilt: \( f(-x) = -f(x) \) für alle \( x \) im Definitionsbereich. Dies ist typisch für ungerade Funktionen, wie z.B. \( f(x) = x^3 \). 3. **Parabel**: Eine Parabel hat die allgemeine Form \( f(x) = ax^2 + bx + c \). Der Graph einer Parabel ist immer achsensymmetrisch zur Linie \( x = -\frac{b}{2a} \). 4. **Hyperbel**: Eine Hyperbel hat typischerweise die Form \( \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \) oder \( \frac{y^2}{b^2} - \frac{x^2}{a^2} = 1 \). Hyperbeln sind nicht achsensymmetrisch, können aber punktsymmetrisch zum Ursprung sein. Durch die Analyse der Funktionsgleichung und das Überprüfen dieser Eigenschaften kannst du feststellen, ob die Funktion achsensymmetrisch, punktsymmetrisch, eine Parabel oder eine Hyperbel ist.

Frage stellen und sofort Antwort erhalten

Verwandte Fragen

Wie setzt man den Punkt P(1/3) in die Gleichung y = ax²?

Um den Punkt \( P(1, \frac{1}{3}) \) in die Gleichung \( y = ax^2 \) einzusetzen, musst du die Koordinaten des Punktes in die Gleichung einfügen. Das bedeutet, dass du \( x = 1 \) und \( y = \fra... [mehr]

Wie erkennt man den Funktionsterm einer Parabel am Graphen?

Um den Funktionsterm einer Parabel anhand ihres Graphen zu erkennen, kannst du folgende Schritte befolgen: 1. **Scheitelpunkt bestimmen**: Finde den Scheitelpunkt der Parabel. Dieser Punkt ist entwed... [mehr]

Wie sieht der Graph der Stammfunktion einer nach oben geöffneten Parabel aus?

Der Graph der Stammfunktion einer nach oben hin geöffneten Parabel hat die Form einer kubischen Funktion. Eine nach oben hin geöffnete Parabel kann allgemein durch die Funktion \( f(x) = ax^... [mehr]

Scheitelpunktform berechnen?

Die Scheitelpunktform einer Parabel hat die allgemeine Form \( y = a(x - h)^2 + k \), wobei \((h, k)\) der Scheitelpunkt der Parabel ist. Um die Scheitelpunktform aus der allgemeinen Form \( y = ax^2... [mehr]