Hat f an der Stelle a einen lokalen Extremwert?

Antwort

Eine Funktion \( f \) hat an der Stelle \( a \) einen lokalen Extremwert, wenn die folgenden Bedingungen erfüllt sind: 1. **Ableitung**: Die erste Ableitung \( f'(a) = 0 \) oder \( f'(a) \) ist nicht definiert. Dies bedeutet, dass an dieser Stelle ein kritischer Punkt vorliegt. 2. **Zweite Ableitung**: Um zu bestimmen, ob es sich um ein Maximum oder Minimum handelt, kann die zweite Ableitung \( f''(a) \) betrachtet werden: - Wenn \( f''(a) > 0 \), dann hat \( f \) an der Stelle \( a \) ein lokales Minimum. - Wenn \( f''(a) < 0 \), dann hat \( f \) an der Stelle \( a \) ein lokales Maximum. - Wenn \( f''(a) = 0 \), ist der Test nicht eindeutig, und es könnte notwendig sein, weitere Tests durchzuführen (z.B. den Test der höheren Ableitungen oder den ersten Ableitungstest). Zusammengefasst: Ein lokaler Extremwert liegt vor, wenn die erste Ableitung an der Stelle \( a \) null ist oder nicht definiert ist, und die zweite Ableitung eine positive oder negative Zahl ist, um die Art des Extremwerts zu bestimmen.

KI fragen

Verwandte Fragen

Welcher Wortschatz ist typisch bei der Laplace-Transformation?

Typischer Wortschatz im Zusammenhang mit der Laplace-Transformation umfasst folgende Begriffe: - **Laplace-Transformation**: Integraltransformation, die eine Funktion \( f(t) \) in eine Funktion \( F... [mehr]

Was ist die Produktregel einfach erklärt?

Die Produktregel ist eine wichtige Regel in der Differentialrechnung. Sie hilft dir, die Ableitung eines Produkts aus zwei Funktionen zu berechnen. Stell dir vor, du hast zwei Funktionen: f(x) und g(... [mehr]

Welche Funktion hat ein Maximum bei (332.0822, 0.83269) und ein Minimum bei (332.2387, -0.82764) und konvergiert für x gegen unendlich gegen die x-Achse?

Gesucht ist eine Funktion \( f(x) \), die - ein Maximum bei \( (332.0822,\ 0.83269) \), - ein Minimum bei \( (332.2387,\ -0.82764) \) hat, - und für \( x \to \infty \) gegen die x-Achse (also \(... [mehr]

Welche Funktion besitzt sowohl ein Minimum als auch ein Maximum und hat auf beiden Seiten eine Asymptote zur x-Achse?

Ein Beispiel für eine Funktion, die ein Minimum und ein Maximum besitzt und auf beiden Seiten (für \( x \to -\infty \) und \( x \to +\infty \)) die x-Achse als Asymptote hat, ist die Funktio... [mehr]

Was ist eine ganzrationale Funktion?

Eine ganzrationale Funktion ist eine Funktion, die durch ein Polynom dargestellt wird. Das bedeutet, sie hat die Form f(x) = aₙxⁿ + aₙ₋₁xⁿ⁻¹ + ... + a₁x + a₀ Dabei sind a₀, a₁, ..., aₙ reelle Z... [mehr]

Wie lautet die erste Ableitung der Quadratwurzel von x?

Die zweite Wurzel von \( x \) ist gleich \( \sqrt{x} \) oder \( x^{1/2} \). Die erste Ableitung davon ist: \[ \frac{d}{dx} \left( x^{1/2} \right) = \frac{1}{2} x^{-1/2} = \frac{1}{2\sqrt{x}} \] **A... [mehr]

Durch welche Operationen wird eine Funktion f(x) entlang der x-Achse gestaucht oder gestreckt?

Eine Funktion \( f(x) \) wird längs der x-Achse gestaucht oder gestreckt, indem du das Argument der Funktion mit einem Faktor \( a \) multiplizierst: - **Streckung entlang der x-Achse:** \(... [mehr]

Was bedeutet 'Gib die Stelle f(x)=2 möglichst genau an, wenn der Graph vorliegt'?

Die Aufgabe „Gebe die Stelle f(x) = 2 möglichst genau an, Graph liegt mir vor“ bedeutet: Du sollst die x-Werte (also die Stellen auf der x-Achse) angeben, für die der Funktionsw... [mehr]

Was sind die Nullstellen von f(x) = (x - 2,5)² + 1?

Um die Nullstellen der Funktion \( f(x) = (x - 2.5)^2 + 1 \) zu finden, setzt man die Funktion gleich null: \[ (x - 2.5)^2 + 1 = 0 \] Zuerst isolieren wir den quadratischen Term: \[ (x - 2.5)^2 = -... [mehr]

Nullstelle von h(x) = x² - 1,5?

Um die Nullstellen der Funktion \( h(x) = x^2 - 1,5 \) zu finden, setzt man die Funktion gleich null: \[ x^2 - 1,5 = 0 \] Das kann umgeformt werden zu: \[ x^2 = 1,5 \] Nun zieht man die Quadra... [mehr]