Definition und Eigenschaften einer direkt proportionalen Funktion kurz?

Antwort

Eine direkt proportionale Funktion ist eine mathematische Beziehung zwischen zwei Variablen, bei der das Verhältnis der beiden Variablen konstant ist. Diese Funktion hat die Form \( y = kx \), wobei \( k \) eine Konstante ist. Eigenschaften: 1. **Linearität**: Die Funktion ist eine gerade Linie, die durch den Ursprung (0,0) verläuft. 2. **Konstante Proportionalität**: Das Verhältnis \( \frac{y}{x} \) ist immer gleich \( k \). 3. **Steigung**: Die Steigung der Linie ist gleich der Konstanten \( k \). 4. **Positiver Zusammenhang**: Wenn \( k > 0 \), steigt \( y \) mit steigendem \( x \); wenn \( k < 0 \), sinkt \( y \) mit steigendem \( x \).

KI fragen

Verwandte Fragen

Welcher Wortschatz ist typisch bei der Laplace-Transformation?

Typischer Wortschatz im Zusammenhang mit der Laplace-Transformation umfasst folgende Begriffe: - **Laplace-Transformation**: Integraltransformation, die eine Funktion \( f(t) \) in eine Funktion \( F... [mehr]

Was ist die Produktregel einfach erklärt?

Die Produktregel ist eine wichtige Regel in der Differentialrechnung. Sie hilft dir, die Ableitung eines Produkts aus zwei Funktionen zu berechnen. Stell dir vor, du hast zwei Funktionen: f(x) und g(... [mehr]

Welche Funktion hat ein Maximum bei (332.0822, 0.83269) und ein Minimum bei (332.2387, -0.82764) und konvergiert für x gegen unendlich gegen die x-Achse?

Gesucht ist eine Funktion \( f(x) \), die - ein Maximum bei \( (332.0822,\ 0.83269) \), - ein Minimum bei \( (332.2387,\ -0.82764) \) hat, - und für \( x \to \infty \) gegen die x-Achse (also \(... [mehr]

Welche Funktion besitzt sowohl ein Minimum als auch ein Maximum und hat auf beiden Seiten eine Asymptote zur x-Achse?

Ein Beispiel für eine Funktion, die ein Minimum und ein Maximum besitzt und auf beiden Seiten (für \( x \to -\infty \) und \( x \to +\infty \)) die x-Achse als Asymptote hat, ist die Funktio... [mehr]

Was ist eine ganzrationale Funktion?

Eine ganzrationale Funktion ist eine Funktion, die durch ein Polynom dargestellt wird. Das bedeutet, sie hat die Form f(x) = aₙxⁿ + aₙ₋₁xⁿ⁻¹ + ... + a₁x + a₀ Dabei sind a₀, a₁, ..., aₙ reelle Z... [mehr]

Welche Eigenschaften haben Verbindungsvektoren?

Ein Verbindungsvektor ist ein Vektor, der zwei Punkte im Raum miteinander verbindet. Die wichtigsten Eigenschaften von Verbindungsvektoren sind: 1. **Definition**: Der Verbindungsvektor \(\vec{A... [mehr]

Welche Eigenschaften haben Vektoren?

Vektoren besitzen mehrere grundlegende Eigenschaften: 1. **Richtung und Betrag**: Ein Vektor ist durch seine Richtung und seinen Betrag (Länge) eindeutig bestimmt. 2. **Addition**: Zwei Vektore... [mehr]

Woran erkenne ich ein Parallelogramm?

Ein Parallelogramm erkennst du an folgenden Eigenschaften: 1. **Gegenüberliegende Seiten sind parallel**: Die jeweils gegenüberliegenden Seiten verlaufen exakt parallel zueinander. 2. **Geg... [mehr]

Welche zehn Alltagssituationen verdeutlichen in je einem Satz Proportionalität und Antiproportionalität?

1. Je mehr Personen an einem Kuchen essen, desto kleiner wird das Kuchenstück für jeden (antiproportional). 2. Je schneller du fährst, desto kürzer dauert die Fahrt (antiproporti... [mehr]

Welche Alltagssituationen zeigen proportionale und antiproportionale Zusammenhänge?

Hier sind Beispiele für Alltagssituationen, in denen proportionale und antiproportionale (umgekehrt proportionale) Zusammenhänge vorkommen: **Proportionale Situation:** Je mehr Äpfel d... [mehr]